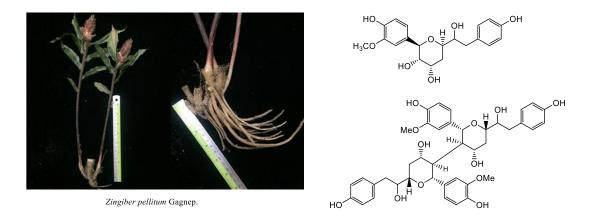


Phenolic compounds from the rhizomes of Zingiber pellitum

Nguyen Phuong Hanh^a, Nguyen Thi Thu Minh^b, Nguyen Thu Uyen^b, Do Hoang Giang^b, Nguyen Quoc Binh^c, and Nguyen Tien Dat^{b,*}

^a Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam

^bCentre for High Technology Research and Development, VAST, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam ^c Vietnam National Museum of Nature, VAST, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam Email: <u>ntdat@chtd.vast.vn</u>


Received 12-01-2024

Accepted 02-10-2025

Published on line 02-19-2025

Abstract

Six new phenolic compounds have been isolated from the rhizome of *Zingiber pellitum*, including two new diarylheptanoids, zingiberpyrans A and B, rhamnocitrin-3-*O*-rhamnoside, meranzin hydrate, vanillin and (+)- α -viniferin. Their structures were elucidated by analyzing NMR, HRESIMS, and CD spectral evidences combining with the published data. Rhamnocitrin-3-*O*-rhamnoside (**3**) exhibited the strongest inhibition of nitric oxide production in LPS-stimulated RAW264.7 cells (IC₅₀ 49.6 μ M) while zingiberpyran A (**1**) was less active (IC₅₀ 71.0 μ M).

Keywords: Zingiber pellium, diarylheptanoids, zingiberpyrans A, zingiberpyrans B, anti-inflammation

Introduction

Zingiber pellitum Gapnep. is an endemic species of Vietnam and is found in several regions of this country¹. It is an herbaceous plant, reaching a height of 0.8-1.2 meters, with densely long hair covering the entire plant and a tuberous rhizome. This species is distinguished by its unique inflorescence type, producing terminal flowers on leafy stems¹. Like other *Zingiber* species, *Z. pellitum* has a long history of use in traditional medicine to treat ailments such as cold, fever, and cough². A number of compounds have been isolated from different *Zingiber* species, such as diarylheptanoids, gingerols, flavonoids and terpenoids, exhibiting a wide spectrum of bioactivities, such as anti-inflammatory, antioxidant, anti-microbial and anti-cancer². However, previous reports on the chemical composition and biological activity of *Z. pellitum* predominantly focused on essential oil composition³⁻⁵. The present study, therefore, represents the first to report the isolation of six phenolic compounds (Figure 1), including two new diarylheptanoids, from *Z. pellitum* rhizomes, with their chemical structures determined through spectral analysis. Furthermore, the antioxidant and anti-inflammatory activities of the isolated compounds were also reported in this research.

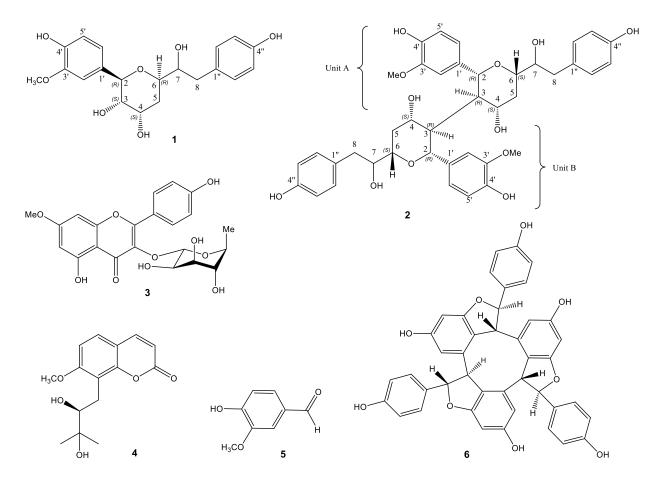


Figure 1. Structures of the compounds isolated from Z. pellitum rhizomes.

Results and Discussion

By using various chromatographic techniques, the methanol extract of *Z. pellitum* rhizomes was separated to obtain two new diarylheptanoids **1** and **2**, and four known compounds, rhamnocitrin-3-*O*-rhamnoside (**3**),⁶ meranzin hydrate (**4**),⁷ vanillin (**5**),⁸ and (+)- α -viniferin (**6**).⁹

Compound 1 was obtained as an amorphous pale-yellow powder with the molecular formula $C_{20}H_{24}O_7$, which was confirmed by the sodium adduct at m/z 399.1379 [M + Na]⁺ from the HRESIMS (calcd. for C₂₀H₂₄NaO₇, 399.1420). The ¹H-NMR spectrum of **1** provided the information of 7 aromatic protons, therein 4 protons at δ_{H} 7.03 (2H, d, J = 8.4 Hz, H-2''/6'') and 6.70 (2H, d, J = 8.4 Hz, H-3''/5'') suggesting the presence of an AA'BB' spin system, and 3 proton signals at δ_{H} 6.81 (1H, d, J = 8.4 Hz, H-5'), 6.94 (1H, d, J = 1.8, 7.8 Hz, H-6'), 7.10 (1H, d, J = 1.8 Hz, H-2') were considered to belong to an ABX system (Table 1). The ¹³C-NMR and HSQC demonstrated the presence of 20 carbon signals, regarding 12 signals belonging to two sets of aromatic systems, five oxymethines at δ_c 69.2, 73.7, 73.9, 75.8, and 79.4, one methoxy group at δ_c 56.5 and two methylene sp³ carbons δ_c 35.4 and 39.8 (Table 2). In the COSY spectrum, the H-H spin-spin interactions were observed between H-2 ($\delta_{\rm H}$ 4.39) \leftrightarrow $H-3 (\delta_{H} 3.53) \leftrightarrow H-4 (\delta_{H} 4.17) \leftrightarrow H-5 (\delta_{H} 1.77, 2.02) \leftrightarrow H-6 (\delta_{H} 3.77) \leftrightarrow H-7 (\delta_{H} 3.61) \leftrightarrow H-8 (\delta_{H} 2.67, 2.83),$ which allowed for the identification of a continuous bond chain from C-2 to C-8 (Figure 2). The HMBC experiment showed the couplings from H-2 (δ_{H} 4.39) to C-1' (δ_{C} 133.5), C-2' (δ_{C} 112.7), C-6' (δ_{C} 122.0) and C-4 (δ_{C} 69.3) and interaction from H-8 ($\delta_{\rm H}$ 2.67, 2.83) to C-1" ($\delta_{\rm C}$ 131.1), C-2"/6" ($\delta_{\rm C}$ 131.4) và C-6 ($\delta_{\rm C}$ 73.9) allowing the identification of compound 1 as a diarylheptanoid with two benzene rings at C-2 and C-8 positions. Besides, HMBC couplings from H-2 ($\delta_{\rm H}$ 4.39) to C-6 ($\delta_{\rm C}$ 73.9) confirmed the presence of a cyclic pyran ring (Figure 2). The location of the methoxy group was assigned at C-3' based on the HMBC correlation from the methoxy signal (δ_{H} 3.90) to C-3' ($\delta_{\rm C}$ 147.5).

No	1 (in CD₃OD)	2 (in CD₃OD)	2 (in DMSO- <i>d</i> ₆)
2	4.40 (1H, d, 10.2)	5.09 (1H, d, 6.0)	4.91 (1H, d, 4.8)
3	3.55 (1H, dd, 10.2, 3.0)	3.31 (1H, overlapped)	3.09 (1H, s)
4	4.17 (1H, q-like, 3.0)	4.68 (1H, q-like, 3.6)	4.44 (1H, q-like, 3.0)
5	2.05 (1H, ddd, 13.8, 12.0, 2.4)	2.04 (1H, ddd, 13.8, 7.8, 6.0)	1.84 (1H <i>,</i> m)
	1.79 (1H, ddd, 13.8, 3.6, 2.4)	1.82 (1H, m)	1.78 (1H <i>,</i> m)
6	3.78 (1H, dt, 12.0, 3.0)	3.32 (1H, overlapped)	3.20 (1H, s)
7	3.61 (1H, td, 7.2, 3.6)	3.46 (1H, m, H-7),	3.35 (1H, m, H-7),
8	2.85 (1H, dd, 13.2, 6.6)	2.60 (1H, dd, 13.8, 4.)	2.50 (1H, dd, 13.8, 4.2)
	2.69 (1H, dd, 13.2, 7.2)	2.53 (1H, dd, 13.8, 9.0)	2.39 (1H, dd, 13.8, 9.0)
2′	7.10 (1H, d, 1.8)	6.97 (1H, d, 1.8),	6.89 (1H, d, 1.2),
5′	6.81 (1H, d, 8.4)	6.82 (1H, d, 8.4)	6.75 (1H, d, 8.4)
6′	6.94 (1H, dd, 1.8, 7.8)	6.85 (1H, d, 8.4, 1.8)	6.72 (1H, d, 8.4, 1.2)
2′′-6′′	7.03 (2H, d, 8.4)	6.97 (2H, d, 8.4)	6.93 (2H <i>,</i> d, 8.4)
3′′-5′′	6.70 (2H, d, 8.4)	6.68 (2H, d, 8.4)	6.62 (2H, d, 8.4)
OCH ₃	3.90 (3H, br s)	3.85 (3H, br s)	3.74 (3H, br s)

Table 1. ¹H NMR data (mult., J in Hz) of 1 and 2

This NMR data were almost identical to those of hedycoropyran A and B [11], except for the small difference in the pyran ring. The large coupling constant between H-2 and H-3 ($J_{2,3}$ = 10.2 Hz) indicated that H-2 and H-3

were in di-axial relationship, while H-4 was in an equatorial orientation due to the small coupling constant with H-3 ($J_{3,4}$ = 3.0 Hz).¹⁰ In the NOESY spectrum of **1**, an evident cross-peak between H-2 and H-6 confirmed the axialorientation of H-6. For the absolute configuration identification, an ECD experiment was recorded. The 2*R*configuration was determined based on the negative Cotton effect at 225 nm.^{11,12} Consequently, (3*S*,4*S*,6*R*) absolute configurations were assigned. However, the configuration of C-6 could not be determined using the present spectroscopic data. Thus, compound **1** was determined to be (2*R*,3*S*,4*S*,6*R*)-6-(-1-hydroxy-2-(4hydroxyphenyl)ethyl)-2-(4-hydroxy-3-methoxyphenyl)tetrahydro-2*H*-pyran-3,4-diol, for which the name zingiberpyran A is proposed.

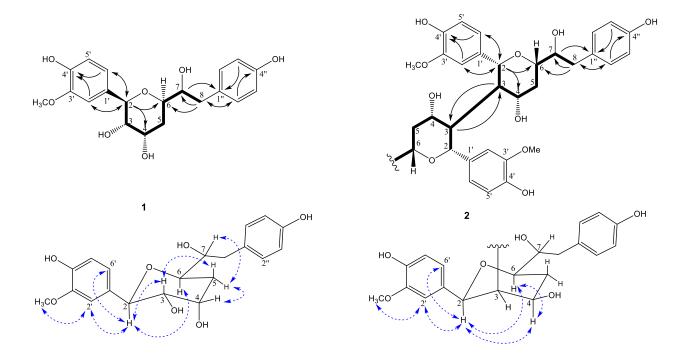


Figure 2. Key COSY (—), HMBC (\rightarrow) and NOESY (<---->) correlations of compounds 1 and 2.

Compound **2** was obtained as an amorphous pale-yellow powder. Its HRESIMS showed a pseudomolecular ion peak at m/z 741.2852 [M + Na]⁺ compatible with the molecular formula C₄₀H₄₆O₁₂ of **2**. The NMR data of **2** were similar to those of **1** with two aromatic AA'BB' and ABX systems, five aliphatic methines, two methylenes and one methoxy group. The detailed 2D NMR analysis of **2** (COSY, NOESY, HSQC and HMBC) allowed to assign the ¹H and ¹³C NMR data as in Table 1. The appearance of the upfield-shifted resonance δ_c 58.4 (C-3) instead of δ_c 73.7 in **1** suggested that C-3 was not hydroxylated. Comparing with the NMR data of diarylheptanoids previously reported [13, 14], this chemical shift is compatible with the C–C connection. In combination with the molecular formula C₄₀H₄₆O₁₂ as deduced from the HRESIMS experiment, two identical moieties, A and B, were proposed and linked via a C-3(A)—C-3(B) bridge. This connection was also supported by HMBC analysis which revealed a clear cross-peak between the proton at δ_H 3.31 (H-3) and the "itself" carbon atom at δ_c 58.4 (C-3) (Figure 2 and S19). It is noted that HMBC experiment gives heteronuclear long-range proton–carbon correlations but not direct one-bond correlations. Thus, the coupling from the proton at δ_H 3.31 to the carbon atom at δ_c 58.4 was assigned for the correlation from H-3 (A) to C-3(B) and vice versa.

No	1 (in CD₃OD)	2 (in CD₃OD)	2 (in DMSO- <i>d</i> ₆)
2	79.4	81.1	78.1
3	73.7	58.4	56.6
4	69.3	79.8	77.5
5	35.4	36.6	34.8
6	73.9	72.4	70.5
7	75.8	76.2	73.9
8	39.8	40.0	38.4
1′	133.5	135.8	134.7
2′	112.7	111.7	110.7
3′	148.7	149.2	147.4
4′	147.2	147.4	145.6
5′	115.7	116.3	115.2
6′	122.0	120.8	118.7
1″	131.1	131.4	130.1
2′′-6′′	131.4	131.3	129.9
3′′-5′′	116.0	116.0	114.6
4''	156.7	156.5	155.1
OCH₃	56.5	56.5	55.6

Table 2. ¹³C NMR data of 1 and 2

Similar to **1**, compound **2** exhibited the negative Cotton effect at 230 nm in the ECD spectrum, indicating 2*R*-configuration. For the relative configurations of the pyran ring, the coupling constants and NOESY correlations were analyzed. Because signals of H-3 and H-6 overlapped in the ¹H NMR spectrum of **2** recorded in CD₃OD, the NMR data in DMSO-*d*₆ of **2** is provided as well (see supplemental material). The smaller coupling constant between H-2 and H-3 ($J_{2,3} = 6.0$ Hz in CD₃OD and 4.8 in DMSO-*d*₆) indicated that H-2 and H-3 were in an axial-equatorial relationship but not di-axial in case of **1**. The NOE correlations of H-2/H-4, H-2/H-6 and H-4/H-6 confirmed the same orientation of H-2, H-4 and H-6. From these evidences, compound **2** was newly elucidated to be (2*R*,2'*R*,3*R*,3'*R*,4*S*,4'*S*,6*S*,6'*S*)-6,6'-bis(1-hydroxy-2-(4-hydroxyphenyl)ethyl)-2,2'-bis(4-hydroxy-3-methoxyphenyl)octahydro-2*H*,2'*H*-[3,3'-bipyran]-4,4'-diol, for which the name zingiberpyran B is proposed.

All the isolated compounds were evaluated for their anti-inflammatory effect via inhibition of nitric oxide production. In RAW264.7 cells stimulated by lipopolysaccharide (LPS), rhamnocitrin-3-*O*-rhamnoside (**3**) exhibited the strongest effect with the IC₅₀ value of 49.6 \pm 0.73 μ M while zingiberpyran A (**1**) proved less active (IC₅₀ 71.0 μ M). The other compounds showed any remark inhibition at 100 μ M.

Conclusions

Two new diarylheptanoid compounds named zingiberpyrans A and B, and four known compounds, vanillin, (+)- α -viniferin, rhamnocitrin-3-*O*-rhamnoside, and meranzin hydrate were isolated for the first time from the rhizomes of *Zingiber pellitum*. Their structures were elucidated by using NMR, HR-ESI-MS and CD spectral data. All isolated compounds were evaluated for the inhibition of NO production in the LPS-stimulated RAW264.7 cells. Compound **1** and **3** showed remarkable inhibitory activity with IC₅₀ value of 71.0 and 49.6 μ M, respectively.

Experimental Section

General:

Plant material

Zingiber pellium was collected from Binh Chau-Phuoc Buu Nature Reserve, Ba Ria - Vung Tau, Vietnam in January 2023 and was authenticated by one of the authors, Dr. Nguyen Quoc Binh. A voucher specimen (NPH1.2023) is deposited at the herbarium of the Institute of Ecology and Biological Resources.

Chemical and apparatus

Thin layer chromatography (TLC) was conducted on pre-coated silica gel (60 F254, Merck) and detected under ultraviolet light and sprayed with aqueous sulfuric acid 10%, vanillin 10% or ceric sulfate, then heated at 105°C until the spots appear clearly. Column chromatography (CC) was performed in silica gel (230-400 mesh ASTM, Merck), and Diaion HP 20 (Merck). HPLC system was used as Agilent HPLC 1100 series, coupling with detector DAD, and a semi-preparative process was performed on YMC-pack ODS-A 250x10 mm, 5µm, 20 nm column at a flow rate of 3.0 mL/min.

NMR spectra were recorded on a Bruker AvanceNEO 600 MHz and a Bruker 500MHz spectrometer using TMStetramethyl silane as an internal standard. HR-MS were collected on the Agilent 6530 Accurate-Mass Q-TOF LC/MS. Optical rotations were recorded on a Jasco P-2000 Digital Polarimeter.

Extraction and isolation

1.3 kg of dried powder of *Zingiber pellium* (ZP) was extracted exhaustively with methanol. Three methanol extractions (1.5L/time) were filtered, combined and concentrated under reduced pressure to obtain a concentrated total extract. This was partitioned with *n*-hexane and methanol to give the corresponding extracts: *n*-hexane extract (15.93 g) and methanol extract (39.13 g).

The methanol extract was loaded on the Diaion HP-20 CC with stepwise elution water, methanol 40%, methanol 100% and acetone 100% in order to collect 4 fractions M0, M40, M100 and A100 respectively. M100 fraction was chromatographed on silica gel CC and eluted with gradient elution of dichloromethane/methanol (10/1 - 1/1, v/v/) to collect 8 fractions (from F1.1 to F1.8). Fraction F1.3 was separated by silica gel CC with hexane/ethyl acetate (4/1/, v/v/) followed by preparative HPLC (30-100% MeOH in H₂O in 120 min) to afford compound **5** (3.6 mg). Fraction F1.6 was separated on a column with silica gel (stationary phase) and dichloromethane/acetone (5/1, v/v/) (mobile phase), to produce 8 fractions, denoted as F2.1 to F2.8. Fraction F2.6 was continually chromatographed on HPLC (40-80% MeOH in H₂O (HPLC grade) in 180 min) to yield compounds **1** (9.3 mg) and **2** (4.1 mg). Compound **6** was separated from fraction F2.8 by preparative HPLC eluting (30-80% MeOH in H₂O (HPLC grade) in 200 min). Compounds **3** (3.0 mg) and **4** (2.7 mg) were isolated from fraction F1.7 by semi-preparative HPLC eluting with gradient solvent from 30 to 70% MeOH in 180 min.

Zingiberpyran A (1): amorphous pale yellow powder; $[\alpha]_D^{28} = -19.6$ (*c* 0.10, MeOH); ECD (MeOH) λ max ($\Delta\epsilon$) 202 (-14.8), 225 (-1.22); HR-ESI-MS *m/z* = 399.1379 [M + Na]⁺ (calcd. 399.1420 for C₂₀H₂₄O₇Na). ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD), see Table 1 and 2.

Zingiberpyran B (**2**): amorphous pale yellow powder; $[\alpha]_D^{28} = -17.4$ (*c* 0.03, MeOH); ECD (MeOH) λ max ($\Delta \epsilon$) 206 (-5.6), 230 (-4.96); HR-ESI-MS *m*/*z* 741.2852 [M + Na]⁺ (calcd. 741.2887 for C₄₀H₄₆NaO₁₂). ¹H-NMR (600 MHz, CD₃OD and DMSO-*d*₆) and ¹³C-NMR (150 MHz, CD₃OD and DMSO-*d*₆), see Table 1 and 2.

Inhibition assay for nitric oxide production

The inhibitory effect of four isolated compounds was determined using a previously reported procedure¹⁵ with dexamethasone used as a positive control (IC₅₀ 13.3 μ M). All experiments were performed in triplicate.

Acknowledgements

This study was financially supported by the Vietnam Academy of Science and Technology (VAST) under the grant number VAST04.05/23-24.

Supplementary Material

Full experimental detail including NMR, HRESIMS and ECD spectra of compounds **1** and **2** can be found via the "Supplementary information" section of this article's webpage.

References

1. Leong-Skornickova, J.; Binh, N. Q.; Dang, T. H.; Sida, O.; Rybkova, R.; Vuong. T.B. *Phytotaxa* **2015**, *219*, 201-220.

https://doi.org/10.11646/phytotaxa.219.3.1

- Deng, M.; Yun, X.; Ren, S.; Qing, Z.; Luo, F. *Molecules* 2022, 27, 2826. https://doi.org/10.3390/molecules27092826
- 3. Hanh, N. P.; Nguyen, S. K.; Thanh, B. V.; Binh, N. Q.; Ogunwande, I. *J. Essent. Oil Bear. Pl.* **2023**, *26*, 937-945. <u>https://doi.org/10.1080/0972060X.2023.2252835</u>
- 4. Giang, P. M.; Son, P. T.; Konig, W. A. J. Essent. Oil Bear. Pl. **2011**, *14*, 494-497. https://doi.org/10.1080/0972060X.2011.10643607
- Van, H. T.; Dam, S. M.; Phan U. T. X.; Nguyen, T. N. A.; Nguyen, T. B. T.; Tran, T. L.; Luu, T. N.; Le, V. S.; Huynh, N. T. A. Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70, 273-281. https://doi.org/10.11118/actaun.2022.020
- Fukunaga, T.; Nishiya, K.; Kajikawa, I.; Watanabe, Y.; Suzuki, N.; Takeya, K.; Itokawa, H. *Chem. Pharm. Bull.* 1988, *36*, 1180-1184. https://doi.org/10.1248/cpb.36.1180
- Sarker, S. D.; Habibi, B.; Sharifi, T.; Asnaashari, S.; Nahar, L.; Delazar, A. Orient. Pharm. Exp. Med. 2008, 8, 222-227. https://doi.org/10.3742/OPEM.2008.8.3.222
- Cicchetti, E.; Silvestre, V.; Fieber, W.; Sommer, H.; Remaud, G.; Akoka, S.; Chaintreau, A. *Flavour Fragr. J.* 2010, 25, 463-467. <u>https://doi.org/10.1002/ffj.2006.</u>
- 9. Kumar, D.; Gupta, N.; Ghosh, R.; Gaonkar, R. H.; Pal, B. C. *J. Funct. Foods* **2013**, *5*, 211-218. <u>https://doi.org/10.1016/j.jff.2012.10.007</u>
- 10. Huitric, A. C.; Carr, J. B.; Trager, W. F.; Nist, B. J. *Tetrahedron* **1963**, *19*, 2145-2151. <u>https://doi.org/10.1016/0040-4020(63)85029-2</u>
- 11. Lin, Y. S.; Lin, J. H.; Chang, C. C.; Lee S. S. J. Nat. Prod. **2015**, 78, 181-187. https://doi.org/10.1021/np500441r
- 12. Yin, H.; Luo, J. G.; Kong, L. Y. *Phytochem. Lett.* **2013**, *6*, 403-406. <u>https://doi.org/10.1016/j.phytol.2013.05.004</u>
- 13. Ali, M. S.; Tezuka, Y.; Banskota, A. H.; Kadota S. J.Nat.Prod. 2001, 64, 491-496.

https://doi.org/10.1021/np0004931

- 14. Lv, H.; She, G. *Nat. Prod. Commun.* **2010**, *5*, 1687-1708. https://doi.org/10.1177/1934578X1000501035
- 15. Hai, C. T.; Luyen, N T.; Giang, D. H.; Minh, B. Q.; Trung, N. Q.; Chinh, P. T.; Hau, D. V.; Dat, N. T. *Chem. Pharm. Bull.* **2023**, *71*, 451-453. <u>https://doi.org/10.1248/cpb.c22-00779</u>

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (<u>http://creativecommons.org/licenses/by/4.0/</u>)