Supplemental Material

Electrospray ionisation mass spectrometric studies of *N*-substituted 10-(aminosulfonyl)bornyl acrylate derivatives

Lulama P. Mciteka,^{a,b} Kevin A. Lobb,^a Marietjie A. Stander,^c and Perry T. Kaye^{a*}

^aDepartment of Chemistry, Rhodes University, Makhanda, South Africa ^bDepartment of Chemistry, University of the Western Cape, Bellville, Cape Town ^cCentral Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa Email: <u>P.Kaye@ru.ac.za</u>

Table of Contents

L	Mass Spectrometry Methodology and Function Parameters	.S2
П	HRMS ESI MS Spectra	.S3
	NMR Spectra	.S8

I Mass Spectrometry (MS) Methodology

Direct injection MS analysis

1 mg of each sample was dissolved in 1 ml methanol (Romil), followed by a further 10-fold dilution into methanol. 2 μ L of sample was injected into a stream of methanol flowing at 0.3 ml/min, using a Waters ultra pressure liquid chromatograph (UPLC) (Waters, Midford, USA) which conveyed the sample to a Waters Synapt G2 quadrupole time-of-flight (QTOF) mass spectrometer used for high-resolution accurate mass analysis.

Data was acquired in resolution mode, the mass spectrometer was optimized for best sensitivity, a cone voltage of 15 V, desolvation gas was nitrogen at 650 L/hr and desolvation temperature 275 ^oC. The instrument was operated with an electrospray ionization probe in the positive mode. Sodium formate was used for calibration and leucine encephalin was infused in the background as lock mass for accurate mass determinations.

LC-MS/MS analysis

The MS/MS experiments were conducted with liquid chromatographic separation using a Waters BEH C18, 2.1 x 100 mm, 1.7 μ m particle size column kept at 50 °C and the same instrument as above, A generic gradient starting at 100% mobile phase A (0.1% formic acid in MilliQ water) to 100% mobile phase B (acetonitrile with 0.1% formic acid) over 12 minutes using a flow rate of 0.4 mL/min.

The MS/MS experiments were conducted by collision-induced dissociation of selected parent ions by accelerating these ions to high kinetic energy using an electrical potential followed by collision with argon gas molecules in the Trap collision cell at a collision energy of 30 V.

II HRMS ESI MS Spectra

Elemental composition fit of 4a-NH₄⁺ (m/z 395 ion) with its HRMS ESI Mass Spectrum :

Elemental composition fit of $4a-H^+$ (m/z 378 ion) with its HRMS ESI Mass Spectrum:

🐯 Elemente	al Composit	ion													×
Eile Edit Vie	ew Process	Help													
	26	ME	$ \times $												
Single Ma Tolerance = Element pro Number of Monoisotop	ass Analys = 100.0 PPM ediction: Off isotope peak ic Mass, Eve	is 1 / DB ks used f n Electror	E: min for i-FIT n lons	= -1.5, = 3	max = 100.0	etracul	te for each m	ace)							
Elements U	ised:	su witan or	+ 185una	> 1016-1111	minus (up to 100 ciose	Stifeaun	S IUI Bach me	155/							~
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	N	0	S	S	~
378.1743	378.1746	-0.3	-0.8	3.5	C13 H28 N7 O2 52	31.7	3.879	2.07	13	28	7	2	2	2	P
	378.1737 378.1752 378.1752 378.1733 378.1724 378.1764 378.1719 378.1771	0.6 -0.9 1.0 1.9 -2.1 2.4 -2.8	1.6 -2.4 2.6 5.0 -5.6 6.3 -7.4	4.5 12.5 -1.5 -0.5 3.5 17.5 -0.5	C12 H24 N7 07 C21 H24 N5 5 C12 H32 N3 06 52 C11 H28 N3 011 C16 H28 N 09 C24 H20 N5 C9 H28 N7 07 5	31.5 31.8 31.6 31.3 31.6 31.9 31.4	3.684 4.066 3.812 3.562 3.806 4.147 3.624	2.51 1.71 2.21 2.84 2.22 1.58 2.67	12 21 12 11 16 24 9	24 24 32 28 28 20 28	7 5 3 1 5 7	7 6 11 9 7	1 2 1	1 2 2 1	>
LM4 ACRY-4 PK_RU_220 100 - - - - - - - - - -	315_1 1151	(8.818) C	:m (114)	3:1157)				3	06.152	8				1: TOF MS E8 395:2002 396:2032	*)6
225.16	i44 24	42.1908	3.1940						3	308.15	16			378.1743	ţ
0-44 225 23	0 235 24	40 245	250	255	260 265 270 27	5 280	285 290	295 300	305	310 3	315	320	325	225 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415	ılz

Elemental composition fit of 4a-Na⁺ (m/z 400 ion) with the HRMS ESI Mass Spectrum

🔀 Elemen	ıtal Compositi	on																
Eile Edit	⊻jew Process	Help																
	8 8 8	ME																
Single M Tolerance Element Number of Monoisoto 2714 form Elements	Mass Analys = 100.0 PPM prediction: Off of isotope peak opic Mass, Ever hula(e) evaluate	is / DE s used n Electro d with 1:	JE: min for i-FIT n lons 50 resul	= -1.5, = 3 ts withir	max = 100.0 n limits (up to 100 closest	results	s for each ma	ss)										<
Maria	Cole Mass	an Da	0044	0.05	Farmula	LETT	L CTT Maure	Th Cart N	6		AL	-		A1.				<u> </u>
Mass 400.1557	400.1558	-0.1	-0,2	7.5	C20 H27 N O4 S Na	17.0	5.292	0.50	20	27	N 1	4	3	Na 1				
	400.1559 400.1552 400.1549	-0.2 0.5 0.8	-0.5 1.2 2.0	0.5 -1.5 15.5	C14 H28 N O9 Na2 C12 H31 N3 O6 52 Na C25 H22 N O4	30.9 27.2 31.2	19.217 15.498 19.475	0.00 0.00 0.00	14 12 25	28 31 22	1 3 1	9 6 4	2	2 1				
	400.1567 400.1568	-1.0	-2.5 -2.7	2.5 -0.5	C13 H26 N3 O11 C15 H32 N O4 52 Na2	30.6 26.6	18.871 14.901	0.00	13 15	26 32	3	11	2	2				
	400.1543	1.4	3.5	-0.5	C11 H27 N3 O11 Na	31.4	19.673	0.00	11	27	3	11		1				
	400.1576	-1.9	-4.7	1.5	C14 H30 N3 O6 52	26.5	14.786	0.00	14	30	3	6	2					~
LM4 ACRY PK_RU_22	-4 20315_1 1150 ((8.814) C	2m (114)	8:1153)											200	4700		2: TOF MS ES+
100															300	. 1220		
%-																		
91.05	553																400.	1557
			135.111	78												307.1560		
	107.0865							225.1	644	242.19	.06					308.1515 220.1244	395.2004	416.1295
0 11	108.0 -	843		10.1211	169.1020				226.1	377 2	,43.19	33				/ 320.1344		402.1555
0,000	100 110	120	130 1	140 1	150 160 170 180	0 19	80 200	210 220	230	240	250	1 26	30 7	70	280 290 300	310 320 330 340 35	0 360 370 380 390 4	00 410 m/z
For Help, pre-	er Et																	

Elemental composition fit of 4ai (m/z 306 ion) with the HRMS ESI Mass Spectrum:

🔉 Elemental Co	mpositio	n																
<u>File E</u> dit <u>V</u> iew <u>F</u>	rocess <u>H</u> e	elp																
e de e		1 🗉	\mathbf{X}															
Single Mass Analysis																		
Tolerance = 100	Tolerance = 100.0 PPM / DBE: min = -1.5, max = 100.0																	
Element predict	on: Off																	
Number of isoto	pe peaks	used fo	or i-FIT :	= 3														
Monoisotopic Ma	ss, Even B	Electron	lons															
894 formula(e) evaluated with 53 results within limits (up to 100 closest results for each mass)																		
Elements Used:																		
Mass Calc	. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf	%	С	н	N	0	5				
306.1528 306	.1528	0.0	0.0	6.5	C17 H24 N O2 5	22.6	4.273	1.39		17	24	1	2	1				
306	.1535	-0.7	-2.3	2.5	C10 H24 N7 52	33.1	14,724	0.00		10	24	ź	5	2				
306	.1513	1.5	4.9	-1.5	C8 H24 N3 O9	38.7	20.311	0.00		8	24	з	9					
306	.1553	-2.5	-8.2	2.5	C13 H24 N 07	37.4	19.056	0.00		13	24	1	7					
306	.1501	-3.2	-10.5	-1.5	C13 H2U N7 5 C6 H24 N7 O5 5	20.1	1.694	18.38		13	20	4	=	1				
306	.1561	-3.3	-10.8	1.5	C14 H28 N O2 52	31.6	13.226	0.00		14	28	í	2	2				
306	.1494	3.4	11.1	11.5	C20 H20 N O2	38.0	19.666	0.00		20	20	1	2					
PK_RU_220315_ 100- - - - - - - - - - - - - - - - - -	1 1151 (8.	.818) Cr	m (1143	::1157)					30	3	28	61						
225.1644	242	1908									308.1	516						
		_243.	1940															
0-44	35 240	245	250	255	260 265 270 2	75 280	1 285 2	90 295	300		310	315	320	325	330	336	340	345 35
For Help, press F1	.00 240	243	200	200	200 200 210 21	.5 200	, 200 2	200 200			510	515	520	525	555	555	540	040 00

ESI MS/MS Spectrum of $4a-H^+$ (*m*/*z* 378)

ESI MS/MS Spectrum of 4a-NH₄⁺ (*m*/z 395)

MS-MS ESI Mass Spectrum of fragment 4al (m/z 306: "base peak") in spectra of 4al-H⁺ (m/z 378) and 4a-NH₄⁺ (m/z 395)

Elemental composition fit of 4b (m/z 398 ion) with the HRMS ESI Mass Spectrum

Ele Edit Wew Process Help
Single Mass Analysis
Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0
Limitary production. On Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
2241 tormula(e) evaluated with 184 results within limits (ail results (up to 1000) for each mass) Finement Leart
mass Cac.mass muda permi bac formula per per terminorma per per terminorma con termino 5 0 km con 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
398.1200 -0.5 -1.3 3.5 C12.H25.N7 02.52 CI 54.4 9.286 0.01 12 25 7 2 2 1
396.1189 0.07 1.8 1.75 C21 Hb 07 5 6.15 16.303 0.00 13 27 7 2 1
399.1104 1.1 2.8 -1.5 C15 H35 O 52 Rh 57.2 12.073 0.00 15 35 1 2 1 398.1206 -1.1 -2.8 1.2 C20 H25 C21 H25 C1 48.1 2.002 5.49 20 21 5 1 1
3961207 -1.2 -3.0 -0.5 CI + H32 NZ O2 CI N 52.2 7.079 0.08 14 32 2 2 1 1
398.128 -1.3 -3.3 7.5 C17 H24 N3 O4 52 56.9 11.784 0.00 17 24 3 4 2 398.1181 1.4 3.5 C15 C28 H6 Nº 2 67.5 22.329 0.00 28 16 1 2
LM14MPL0F2
MS_Direct_120425_28.21 (0.113) Cm (18.21) 1: TOF MB E8- 1: 00 MB E9- 1 326 nos2 1: 10 MB E9-
100
415.1458
%-
328.0959
417.1439
200,0005
201.0774 201.0274 420 278.04 279.0955 320.1714 201.0062 201.06
220 240 250 560 560 560 560 560 560 560 560 560 5

Elemental composition fit of 4c (m/z 344 ion) with the HRMS ESI Mass Spectrum

Elemental composition fit of 5a (m/z 414 ion) with the HRMS ESI Mass Spectrum

🔀 Elemer	ntal Compo	sition																			X
<u>Eile E</u> dit	View Proces	s <u>H</u> elp																			
	• •) M 🗉	\mathbf{X}																		
Single	Mass Ana	lysis																			^
Tolerance	e = 100.0 P	PM / DB	E: min	= -1.5, i	max = 50.0																
Element Number c	prediction: of isotone n	oake ueed f	for i.EIT	= 3																	=
Monoisoto	opic Mass, E	ven Electror	n lons																		
2368 form	nula(e) evalu	uated with 18	32 resul	ts within	limits (all results (up to	1000) fo	reach mas	s)													_
Elements	Used:																				~
Mass	Calc. Mas	s mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	N) s	CI R	h							^
414.1498	414.150	l -0.3	-0.7	16.5	C22 H20 N7 5	123.3	16.978	0.00	22	20	7	1									-3
	414.1502	2 -0.4	-1.0	3.5	C16 H31 N4 O2 Rh	127.2	20.814	0.00	16	31	4	2	1								
	414.149	0.4	1.0	-0.5	C11 H32 N8 CI Rh	118.2	11.851	0.00	11	32	8 .	2	1 1								
	414.1506	5 -0.8	-1.9	6.5	C20 H29 N O4 5 Cl	112.5	6.135	0.22	20	29	1 ·	1 1	1								
	414.148	3 1.0 - 1.2	2.4	11.5	C21 H24 N3 O4 5	123.3	16.976	0.00	21	24	3 '	4 1	1								
	414.1513	3 -1.5	-3.6	2.5	C13 H29 N7 O2 52 C	116.9	10.547	0.00	13	29	7 3	2 2	1								_
	414.1479	9 1.9	4.6	7.5	C16 H25 N7 O2 5 C	114.9	8.610	0.02	16	25	7 3	2 1	1								~
LM13 MPL	LF2		o (00	- 200																4. 705 100 5	
MS_Direct	_120425_20	5 22 (0.137)	Cm (22	:28)	206 1626															1: TOF MSE 2.26e+	-005
100					300.1320																
%-																					
										431.	1766										
					307.1555						100.4										
											433.1	743									
- 23	25.1643	242 1909			308.1516						436.	1318									
		_245.	0791	279.094	2		360.1346	395.2007	414.14	98	4	52.100	32459.20	57 492	.1659_501.	2198	536.1540	572.106	582.0619	611.2955	
0-444444	اباداندر (۱۳۹۹) (۱۳۹۹) 220	240	260	280	300 320	340	360	380 400	- ny nik	20	440		1777 1777 180	490	500	520	<u>640</u>	560	680	600 620	m/z
	220	240	200	200	500 520	340	300	000 400		20	440			-00	500	520	540	500	500	556 020	-

II NMR Spectra for compound 4a

Note: Extraneous signals at *ca*. 1.26, 2.05 and 4.12 ppm in the ¹H NMR spectra and at *ca*. 14.2, 21.0, 60.5 and 171.4 ppm in the ¹³C NMR spectra are attributed to the presence of residual ethyl acetate.

