

# **Synthesis and antimicrobial activity of novel pyrido[2,3-***d***]pyrimidin-4(1***H***)-ones, and 2-pyrazoline derivatives**

**Ahmed Abdou O. Abeed, <sup>a</sup> \* Mohamed Mohany, <sup>b</sup> Sinisa Djurasevic, <sup>c</sup> Salim S. Al-Rejaie, <sup>b</sup> and Talaat I. El-Emary <sup>a</sup>**

*<sup>a</sup> Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt <sup>b</sup>Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia <sup>c</sup> Faculty of Biology, University of Belgrade, 11158 Belgrade 118, Serbia*

*Email: [ahmed.abeed76@aun.edu.eg](mailto:ahmed.abeed76@aun.edu.eg)*



The synthesis of chalcone **1** allowed the production of a novel group of compounds by linking indole with thiophene moieties. The new series of substituted pyridines **2-8**, 2-pyrazolines **9-14**, and azepines **15, 16** were synthesized using chalcone **1** as a crucial intermediate. 2-Aminopyridines **2, 3,** and **4** were produced by reacting compound **1** with cyanoacetamide, ethyl cyanoacetate, and malononitrile, repectively. The α,βunsaturated ketone **1** underwent conversion to 2-thioxodihydropyridopyrimidinone **5** and 2-hydrazinyl pyridopyrimidinone **6**. These compounds served as the initial substrate for the synthesis of compounds **7** and **8**. 1-Thiocarbamoyl-2-pyrazoline **9** was synthesized by the cycloaddition reaction between thiosemicarbazide and chalcone. 1-(4-oxo-5*H*-thiazolyl)-2-pyrazoline **10** and 1-(4-phenylthiazolyl)-2-pyrazoline **11** were synthesized by treating thiocarbamoyl derivative **9** with chloroacetic acid or phenacyl bromide. Condensation of thiazolyl pyrazoline **10** with aromatic aldehydes yielded the arylidenes **12-14**. The α,β-unsaturated ketone **1** underwent a reaction with bifunctional agents such as *o*-phenylenediamine or *o*-aminophenol, resulting in the formatipn of azepines **15** and **16**. The novel compounds were structurally determined with spectral data including FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and MS spectroscopy as well as elemental analysis. In addition, the new substances were tested for antibacterial activity versus an array of *Gram* positive and *Gram*-negative bacteria, as well as four fungal species. Our findings revealed that 2-pyrazolines **9-14** had remarkable effects when compared to the other compounds.



**Keywords:** Pyridines, 2-pyrazolines, azepines, indole, thiophene, antimicrobial potency

#### **Introduction**

In 1846, Anderson discovered pyridine, an aromatic heterocyclic compound. Subsequently, Korner (1869) and Dewar (1871) determined the pyridine structure. It is a constituent of almost 7000 existing pharmacological compounds having medicinal characteristics. Pyridine has a vital role in the field of chemistry [1,2]. *N,N*-dimethyl-*N*-(4-methylpyridyl)-*N*-alkyl-ammonium chloride **A** is an example a pyridine analog that shows potency and sensitivity for fungal and bacterial strains [3]. Furthermore, clinical and theoretical research on pyrazolopyridine-5-carboxylic acids **B**, showed antibacterial action toward a drug-resistant S*. epidermidis* [4]. Studies have shown that thienopyridines are effective against the two kinds of bacteria [5]. Research findings suggest that pyridine derivatives exhibit significant effectiveness in combating *Herpes simple*x virus type 1 (HSV-1) [6]. as well as exhibiting anticancer [7-10], anti-diabetic [11,12], and antiinflammatory properties [13-15].

2-Pyrazoline is a saturated pyrazole distinguished by the presence of two next atoms of nitrogen and an endocyclic double bond within its ring framework. Due to its superior stability concerning the other two forms, 2-pyrazoline is the most well-researched among the three forms of pyrazolines, namely 1-pyrazoline, 2 pyrazoline, and 3-pyrazoline. Research has demonstrated that 2-pyrazolines **C** exhibits potent anticancer effects on cervical cancer cells from humans (HeLa) and breast cancer cells from humans (MCF7) [16]. In addition, nicotinoyl pyrazolines **D** showed great effectiveness on cancer cells when employed as inhibitors of tubulin assembly [17] (**Figure 1**). Several 2-pyrazoline structures exhibited notable biological properties, such as considerable antiproliferative activity [18-20], antibacterial and antifungal effects [21-27], antihyperglycemic activity [28], as well as anti-inflammatory and analgesic properties [29-32]. Moreover, it is noteworthy that 3-indolecarboxaldehyde and 2-acetyl thiophene are widely used as fundamental components for synthesizing a wide variety of heterocyclic compounds that have significant biological functionalities [33- 46].

Based on the foregoing and a review of our work [31], we decided to produce a new category of pyridine, 2-pyrazoline, and azepine derivatives by reacting chalcone **1** composed of indole and thiophene moieties with different active chemical reagents. The newly synthesized compounds were evaluated for their antimicrobial activity.

**Some of reported pyridine and 2-pyrazoline derivatives with biological importance**



**The novel synthesized pyridine, pyridopyrimidine and 2-pyrazoline analogs**



**Figure 1**. The reported and new synthesized biologically active pyridine, pyridopyrimidine, and 2-pyrazolines.

#### **Results and Discussion**

The key starting material, thienyl indoyl propenone **1**, was generated through the Claisen-Schmidt procedure by reacting 2-acetylthiophene and indole-3-carboxaldehyde [47]. The chalcone **1** was interacted with each of cyanoacetamide, ethyl cyanoacetate, and malononitrile, in the presence of ammonium acetate in hot ethanol, to provide 2-amino-3-carboxamidepyridine **2**, ethyl 2-aminothienyl indolyl pyridine-3-carboxylate **3**, and 2 amino-3-cyanothienyl indolyl pyridine **4**, respectively (**Scheme 1**).



**Scheme 1**. The synthesis of 2-aminopyridines (**2-4**).

The structures of products **2-4** were verified utilizing spectral data (FTIR, NMR, and mass) and elemental analysis. Thus, Fourier Transform Infrared (FTIR) spectrum of product **2** revealed absorbance peaks at *v* 3446, 3239, and 3098  $cm^{-1}$  due to pyridine-NH<sub>2</sub> and indole-NH, as well as a peak at  $v$  1628  $cm^{-1}$  belonging to the carbonyl group. The <sup>1</sup>H NMR spectrum indicated that signals from two amino groups come together with aromatic proton signals at δ 7.01-7.84 ppm. Similarly, the existence of carbonyl carbon was verified by signals in the <sup>13</sup>C NMR spectrum with δ = 166.7 ppm. The FTIR analysis for **3** revealed bands of absorption at *v* 445, 3374, and 3333 cm-1 , which are associated with the amino group and indole-NH. Further, absorbance at *v*  1711 cm<sup>-1</sup> corresponds to the carbonyl group of the ester. A signal at  $\delta$  176.9 ppm was detected in the <sup>13</sup>C NMR of **3**, indicating the presence of the ester carbonyl group attributable to the carbonyl group. The <sup>1</sup>H NMR displayed peaks at δ 11.00 and 13.25 ppm, due to the NH

Chalcone **1** and 6-amino-2-thiouracil were refluxed in acetic acid to yield pyridopyrimidinone **5**. The FTIR spectrum of the latter compound exhibited peaks at *v* 3390, 3307, and 3176 cm<sup>-1</sup> belonging to pyrimidine-NH and indole-NH, as well as absorption bands at *v* 1659 cm<sup>-1</sup> of the pyrimidine. The <sup>13</sup>C NMR of 5 indicated two signals at δ 165.2 and 176.0 ppm correlating to C=O and C=S of the pyrimidine ring, respectively. To examine the synthetic potential of compound **5**, it was heated with hydrazine hydrate to produce 2-hydrazinyl pyridopyrimidinone **6** that was then employed as a reactant with active methylene reagents like acetylacetone and ethyl acetoacetate, yielding 2-pyrazolyl pyridopyrimidines **7** and **8**. The product structures **6-8** were validated using elemental and spectroscopic data.





When chalcone **1** was heated with thiosemicarbazide, it afforded 1-thiocarbamoyl-2-pyrazoline **9**. FTIR Spectroscopy of **9** showed the existence of an amino functional group, revealing two peaks at *v* 3447 and 3312 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum had three doublets of doublets at  $\delta$  3.68-3.76, 3.90-3.98, and 6.29-6.35 ppm, owing to the H<sub>A</sub>, H<sub>B</sub>, and H<sub>X</sub>, indicating the formation of a 2-pyrazoline nucleus. The <sup>13</sup>C NMR spectrum was consistent with FTIR and <sup>1</sup>H NMR, with three distinct signals at  $\delta$  49.1 for pyrazoline-CH<sub>2</sub>, 66.8 for pyrazoline-CH, and 177.0 ppm due to the C=S group. When α-halocarbonyl reagents such as chloroacetic acid or phenacyl bromide reacted with thiocarbamoyl derivative **9**, the products 1-(4-oxo-5*H*-thiazol-2-yl)-2-pyrazoline **10** or 1- (4-phenylthiazol-2-yl)-2-pyrazoline **11** were formed. The reactivity of the methylene group at the thiazole moiety in product **10** was assessed by treating it using various aromatic aldehydes like benzaldehyde, *p*chlorobenzaldehyde, and *p*-bromobenzaldehyde to produce the arylidenes **12-14** (**Scheme 3**). The products **9- 14** were fully verified through elemental analysis tpgether with spectral data such as the FTIR, NMR, with MS spectrometry. Chalcone **1** underwent treatment with *o-*phenylene diamine or *o*-aminophenol to obtain benzodiazepine **15** and benzoxazepine **16**, respectively. The formation of benzodiazepine **15** was verified through FTIR, <sup>1</sup>H- and <sup>13</sup>C NMR. The FTIR diagram of **15** indicated the lack of the chalcone carbonyl group as well as the existence of an absorption bands at *v* 3333 and 3172 cm-1 belonging to diazepine-NH and indole-NH. The <sup>1</sup>H NMR spectrum of **15** verified the formation of the benzodiazepine nucleus through the appearance of three doublets of doublets at  $\delta$  3.13-3.20 for H<sub>A</sub>, 3.81-3.88 for H<sub>B</sub>, and 5.00-5.56 for H<sub>x</sub>. In addition, the <sup>13</sup>C NMR diagram confirmed the absence of a carbonyl group of ketone **1** and also the presence of two signals at 18.5 and 46.2 for  $CH<sub>2</sub>$  and CH of the dihydroazepine ring.



**Scheme 3.** The synthesis of 2-pyrazolines (**9-11**) and azepines (**15** and **16)**.

#### **Antimicrobial screening**

**Antibacterial activity.** All compounds **2-16** were evaluated for antibacterial effects against both *Gram*-positive (*Bacillus cereus, Staphylococcus aureus*) and *Gram*-negative (*Pseudomonas aeruginosa, Escherichia coli*). *Chloramphenicol* was selected as the reference (**Table 1**). The minimum inhibitory concentrations (*MICs*) were calculated. Each of the compounds displayed considerable antibacterial effects. The compounds, 2 aminopyridines **2-4** and pyrido[2,3-*d*] pyrimidin-4(1*H*)-ones **5-8** displayed moderate antibacterial properties.

2-Pyrazoilne derivatives **9–14** exhibit significant activity against tested against other antibacterial species, with *MICs* ranging from 4-30 μg/mL. When compared to pyridines **2–8**, the azepine analogs had significantly higher antibacterial efficacy. Compounds **10** and **11**, containing 2-pyrazoline and thiazole moieties, showed high potency, and this was increased after inserting the aryl group, giving the arylidenes **12– 14**. 1-(5-*p*-Bromobenzyliden-4-oxothiazol-2-yl)-3-(thien-2-yl)-5-(1*H*-indol-3-yl)-2-pyrazoline (**14**) displayed the most potent antibacterial activity against *B. cereus, S. aureus, P. aeruginosa*, and *E. coli*, with *MICs* of 4, 15, 14, and 18 μg/ml, respectively. *B. cereus* was the most sensitive bacterial species against 1-(5-*p*-bromobenzyliden-4-oxothiazol-2-yl)-3-(thien-2-yl)-5-(1*H*-indol-3-yl)-2-pyrazoline (**14**) possesses a *MIC* of 4 µg/mL.

**Antifungal activity.** Compounds **2-16** were tested for antifungal action against the following species: *Geotrichum candidum, Candida albicans, Trichophyton rubrum,* and *Aspergillus flavus*. *Clotrimazole* was selected as the reference drug (**Table 2**). Similar to antibacterial actions, arylidene derivatives **12-14** exhibited high antifungal potency with *MICs* that ranged from 30-50 µg/mL. Compound **14** showed unique *MICs* of 4, 15, 14, and 18 µg/mL against fungal species; *G. candidum*, *C. albicans*, *T. rubrum*, and *A. flavus*, respectively. Compounds **15** and **16** having azepine nucleus generated acceptable results, with *MICs* ranging from 15 to 38 µg/mL. *G. candidum* was one of the most inhibited fungi species from 4-(thienyl-2-yl)-2-(indol-3-yl).-2,3 dihydrobenzo [*b*][1,4]oxazepine (**16**) has a *MIC* of 15 µg/mL.

# **Compound No.** *Gram positive Gram negative Bacillus cereus Staphylococcus aureus Pseudomonas Aruginose Escherichia Coli* **2** | 90 | 100 | 90 | 97 **3** | 50 | 80 | 92 | 95 **4** | 40 | 70 | 89 | 88 **5** 45 72 90 91 **6** 42 71 80 75 **7** 41 78 75 70 **8** 25 35 50 64 **9** | 10 | 25 | 24 | 25 **10** | 21 | 20 | 30 | 2 **11** | 10 | 22 | 25 | 28 **12** | 11 | 18 | 19 | 16 **13** 12 17 18 19 **14** 4 15 14 18 **15** 18 19 20 25 **16** 20 20 26 21 **Reference\*** 10 10 10 10 10

#### **Table 1. The antibacterial activity of the synthesized compounds,** *MIC* **(μg/mL)**

\*Chloramphenicol was used as antibacterial standard. (–) no activity.



#### **Table 2. The antifungal activity of the synthesized compounds, MIC (μg/mL).**

Clotrimazole was used as antifungal standard.  $(+)$  no activity.

### **Conclusions**

This work presents a novel group of pyridines, pyridopyrimidines, 2-pyrazolines, and azepines structured on thiophene and indole nuclei. The chemical reactivity of the starting compound thienyl indolyl 2-propenone **1** was studied by its reactivity with various reagents. 2-Aminopyridines **2**, **3**, and **4** were obtained using active methylene compounds. In addition, 2-thioxopyridopyrimidinone **5** was achieved by the treatment of 6-amino-2-thiouracil with **1**. By reacting **5** with a variety of reagents, 2-substituted pyridopyrimidinones **6-8** were generated. Furthermore, 2-pyrazolines **9-14** and azepines **16**, and **17** derive from the synthesized starting compound **1**. Spectroscopic data (FTIR, NMR, and MS spectrometry) with the analysis of elements elucidated the compounds structures. The new compounds **2-16** have been evaluated for antimicrobial activity. The findings showed that 2-pyrazolines **9-14** have greater antibacterial activity than pyridine derivatives **2-4**. Furthermore, arylidenes with bromine atom **14** are more active than those with chlorine atom **13**. Azepines **15**  and **16** (with seven membered rings) are more effective than compounds **2-4**, which has six members.

### **Experimental Section**

**General.** In this work, the analytical-quality substances were used. The melting points were determined *via* the melting point instrument, APP Digital ST 15. FTIR spectra were obtained with the Shimadzu-408 infrared

spectrophotometer and are shown in  $cm<sup>-1</sup>$  mode. NMR spectra were gathered using a Bruker AV-400 spectrometer. TMS was used as a standard. Mass spectrometry was conducted with a Varian MAT 312 apparatus operating in EI mode at a scan energy of 70 eV. System GmbH vario EL V2.3 1998 CHNS Mode was used to analyze elements.

**General approach for the synthesis of 2-aminopyridines 2-4**. A mixture of **1** (0.50 g, 2 mmol), active methylene reagents (2 mmol), and AcONH<sup>4</sup> (0.25 g, 3 mmol) was heated at reflux in AcOH (10 mL) for 6 h. Upon cooling, the separated product was filtered off, rinsed using water, and purified with ethanol.

**2-Amino-3-carboxamide-6-(thien-2-yl)-4-(indole-3-yl)pyridine** (**2**)*.* Yield: 77%, white crystals: mp 180-183 ◦C. IR (*ν*/cm-1 ): 3446, 3239, 3098 (br. NH<sup>2</sup> and indole-NH), 3052 (Ar-H), 1628 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ = 7.01-7.84 (m, 7 H, 3 thienyl-H and 2NH2), 7.97-8.54 (m, 6H, 5 indole-H and pyridine-H), 12.13 (s, 1H, indole-NH); <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 112.9, 113.1, 115.6, 120.9, 121.6, 123.2, 125.6, 128.6, 129.1, 129.3, 132.5, 133.7, 134.4, 138.0, 138.7, 146.7, 166.7 (CO). ESIMS *m/z* (%) 334.2 [M<sup>+</sup> ] (72). Anal. Calcd. For C18H14N4OS (334.39): C, 64.65; H, 4.22; N, 16.75; S, 9.59. Found: C, 64.58; H, 4.16; N, 16.67; S, 9.48. **Ethyl 2-amino-6-(thien-2-yl)-4-(indol-3-yl)pyridine-3-carboxylate** (**3**). Yield: 72%, orange crystals: mp 193- 195◦C. IR (v/cm<sup>-1</sup>): 3445, 3374, 3333 (NH<sub>2</sub> and indole-NH), 3026 (Ar-H), 1711 (CO); <sup>1</sup>H NMR (400 MHz, DMSO*d6*): δ1.31-1.38 (t, *J* 24.4 Hz*,* 3H, CH3), 4.24-4.29 (q, *J* 14.0*,* 7.2 Hz, 2H, CH2), 7.23-8.22 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 8.55 (s, 2H, NH<sub>2</sub> vanished with D<sub>2</sub>O), 12.57 (s, 1H, indole-NH); <sup>13</sup>C NMR (100 MHz,

DMSO-*d6*): δ = 14.5 (CH3), 61.8 (CH2), 92.8, 110.4, 112.9, 113.1, 115.6, 118.9, 120.8, 121.6, 123.2, 125.7, 128.6, 132,4 133.0, 138.0, 138.6, 146.9, 176.9 (CO). ESIMS  $m/z$  (%) 363.2 [M+] (87). Anal. Calcd. For C<sub>20</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub>S (363.43): C, 66.10; H, 4.71; N, 11.56; S, 8.82. Found: C, 66.03; H, 4.64; N, 11.46; S, 8.70.

**2-Amino-3-cyano-6-(thien-2-yl)-4-(indole-3-yl)pyridine** (**4**). Yield: 68%, yellow crystals: mp 211-213 ◦C. IR (*ν*/cm-1 ): 3350, 3210, 3121 (NH2 and indole-NH), 3047 (Ar-H), 2217 (CN); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 7.24- 8.52 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 8.66 (s, 2H, NH<sub>2</sub> vanished by D<sub>2</sub>O,), 12.35 (s, 1H, indole-NH); <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 98.2, 110.4, 111.4, 113.5, 116.4, 118.8, 119.2, 122.0, 123.0, 125.7, 128.6, 130,6 133.7, 136.6, 138.6, 142.7, 153.0. ESIMS *m/z* (%) 316.2 [M+] (69). Anal. Calcd. for C18H12N4S (316.38): C, 68.33; H, 3.82; N, 17.71; S, 10.13. Found: C, 68.27; H, 3.76; N, 17.60; S, 10.03.

**7-(Thien-2-yl)-5-(1***H***-indol-3-yl)-2-thioxo-2,3-dihydropyrido[2,3-***d***]pyrimidin-4(1***H***)-one** (**5**). 6-Amino-2 thiouracil (0.28 g, 2 mmol) was mixed with chalcone **1** (0.50 g, 2 mmol) in glacial AcOH (10 mL) then refluxed for 15 h. Once cooled, the liquid was added to broken ice and the resulting solid filtered off and purified from acetic acid giving a brown powder. Yield 74%: mp 221-223 °C. IR (*ν*/cm-1 ): 3390, 3307, 3176 (2 NH and indole-NH), 3026 (Ar-H), 1659 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ 6.65–8.39 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 11.00 (s, 1H, NH vanished by D<sub>2</sub>O), 12.70 (s, 1H, indole-NH), 13.25 (s, 1H, NH vanished by D<sub>2</sub>O); <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 100.9, 110.9, 112.1, 116.1, 117.4, 118.0, 120.6, 121.3, 129.7, 130,6, 132.6, 135.5, 135.9, 146.3, 150.6, 155.6, 165.2 (C=O), 176.0 (C=S). ESIMS *m/z* (%) 376.3 (M<sup>+</sup> , 68%). Anal. Calcd. for C<sub>19</sub>H<sub>12</sub>N<sub>4</sub>OS<sub>2</sub> (376.45): C, 60.62; H, 3.21; N, 14.88; S, 17.04. Found: C, 60.54; H, 3.13; N, 14.80; S, 16.94.

**2-Hydrazinyl-7-(thien-2-yl)-5-(1***H***-indol-3-yl)pyrido[2,3-***d***]pyrimidin**‑**4(3***H***)-one** (**6**). A solution of 2-thioxopyridopyrimidine (0.75 g, 2 mmol) in ethanol (10 mL) was treated with hydrazine hydrate (80%, 4 mL) and kept at reflux for 20 h. Upon cooling, the precipitate was collected and purified from DMF. Yield 68%, white powder: mp 301-302 °C. IR (v/cm<sup>-1</sup>): 3410 and 3235 (NH and NH<sub>2</sub>), 3180 (indole-NH), 1665 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 6.88-8.15 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 8.21 (s, 2H, NH<sub>2</sub> vanished by D<sub>2</sub>O), 12.40 (s, 1H, indole-NH vanished with D<sub>2</sub>O), 13.00 (s, 1H, NH vanished by D<sub>2</sub>O); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ): δ 101.8, 102.6, 106.2, 108.2, 127.7, 128.2, 129.4, 129.7, 130.9, 131.2, 133,8, 134.2, 150.6, 151.9, 158.3, 159.2,

167.5, 168.7, 168.9, 177.0. ESIMS *m/z* (%) 374.3 (M<sup>+</sup> , 59%). Anal. Calcd. for C19H14N6OS (374.42): C, 60.95; H, 3.77; N, 22.45; S, 8.56. Found: C, 60.89; H, 3.70; N, 22.40; S, 8.46.

**General process for synthesizing 2-pyrazoloyl pyrido[2,3-***d***]pyrimidines (7 and 8).** 2-hydrazinyl pyridopyrimidine **6** (0.74 g, 2 mmol) was mixed with acetylacetone or ethyl acetoacetate (2 mmol) in ethanol and the mixture refluxed for 8 h. Upon cooling, the formed solid was collected, dried and recrystallized with 1,4-dioxane/ethanol.

**2-(3,5-Dimethyl-1H-pyrazol-1-yl)-7-(thien**‑**2**‑**yl)**‑**5-(1***H***-indol-3-yl)pyrido[2,3**‑*d***]pyrimidin**‑**4(3***H***)**‑**one** (**7**). Yield: 82%, white crystals: mp 204-206 °C. IR (v/cm<sup>-1</sup>): 3385 (NH), 3148 (indole-NH), 2982 (Aliph-H), 1656 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 1.70 (s, 3H, CH3), 2.20 (s, 3H,CH3), 6.60 (s, 1H, pyrazole-H4), 7.24–8.22 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 12.32 (s, 1H, indole-NH), 13.12 (s, 1H, NH vanished by D<sub>2</sub>O) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 14.1 (CH3), 15.3 (CH3), 108.3, 111.8, 113.9, 114.8, 116.6, 117.7, 118.9, 120.4, 122.3, 125.9, 127.4, 129.2, 130,8, 132.6, 134.4, 135.7, 146.4, 151.2, 152.9, 154.1, 155.8, 166.2 ppm. ESIMS *m/z*  (%) 438.4 (M<sup>+</sup>, 62%). Anal. Calcd for C<sub>24</sub>H<sub>18</sub>N<sub>6</sub>OS (438.50): C, 65.74; H, 4.14; N, 19.17; S, 7.31. Found: C, 65.68; H, 4.08; N, 19.11; S, 7.21.

**2-(3-Methyl-5-oxo-2-pyrazolin-1-yl)-7-(thien**‑**2**‑**yl)**‑**5-(1***H***-indol-3-yl)pyrido[2,3**‑*d***]pyrimidin**‑**4(3***H***)**‑**one** (**8**). Yield: 76%, white plates: mp 199-201 °C. IR (*ν*/cm-1 ): 3305 (NH), 3151 (indole-NH), 3058 (Ar-H), 1675 (CO), 1645 (pyrazolone-CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 2.28 (s, 3H,CH3), 2.70 (s, 2H, pyrazoline-CH2), 7.12-8.34 (m, 9 H, 3 thienyl-H, 5 indole-H and pyridine-H), 12.61 (s, 1H, indole-NH), 13.00 (s, 1H, NH vanished by D<sub>2</sub>O) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ = 17.5 (CH3), 42.6 (CH2), 107.9, 112.1, 114.2, 115.3, 117.8, 119.2, 121.0, 122.8, 126.1, 127.8, 129.0, 130,7, 132.5, 135.8, 145.8, 150.4, 152.8, 154.2, 155.9, 165.2, 167.4 ppm. ESIMS *m/z*  (%) 440.3 (M<sup>+</sup>, 81%). Anal. Calcd for C<sub>23</sub>H<sub>16</sub>N<sub>6</sub>O<sub>2</sub>S (440.48): C, 62.72; H, 3.66; N, 19.08; S, 7.28. Found: C, 62.66; H, 3.60; N, 19.00; S, 7.20.

**1-Thiocarbamoyl-3-(thien-2-yl)-5-(1H-indol-3-yl)-2-pyrazoline (9).** A solution of NaOH (4 mmol) in H<sub>2</sub>O (1 mL) was introduced to chalcone **1** (0.50 g, 2 mmol) and thiosemicarbazide (2 mmol) dissolved in ethanol (10 mL). The mixture was subjected to reflux for 10 h, following which the product was transferred to crushed ice. The solid mass underwent filtration, drying, and crystallization with dioxane. Yield: 68%, yellow crystals: mp 231- 232 °C. IR (*ν*/cm-1 ): 3447, 3312 (NH2), 3180 (NH), 3039 (Ar-H); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ = 3.68-3.76 (dd, *J* = 24.0, 10.0 Hz, H<sub>A</sub>), 3.90-3.98 (dd, *J* = 20.0, 14.0 Hz, H<sub>B</sub>), 6.29-6.35 (dd, *J* 14.0, 10.0 Hz, H<sub>X</sub>), 7.12-8.28 (m, 8 H, 3 thienyl-H and 5 indole-H), 8.34 (s, 2H, NH2), 11.59 (s, 1H, indole-NH) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ = 49.1 (pyrazoline-CH2), 66.8 (pyrazoline-CH), 111.6, 112.9, 113.1, 115.6, 120.9, 121.1, 122.5, 123.9, 124.4, 125.7, 128.6, 138.0, 141.3, 177.0 ppm. ESIMS m/z (%) 326.2 (M<sup>+</sup>, 81%). Anal.Calcd.for C<sub>16</sub>H<sub>14</sub>N<sub>4</sub>S<sub>2</sub> (326.44): C, 58.87; H, 4.32; N, 17.16; S, 19.65. Found: C, 58.80; H, 4.25; N, 17.04; S, 19.53.

**1-(4-Oxo-5***H***-thiazol-2-yl)-3-(thien-2-yl)-5-(1***H***-indol-3-yl)-2-pyrazoline** (**10**)**.** An equimolar mixture containing 1-thiocarbamoyl-2-pyrazoline **9** (0.65 g, 2 mmol), chloroacetic acid (0.18 g, 2 mmol), with anhydrous NaOAc (0.40 g) in glacial AcOH (20 mL) was refluxed for 10 h. The formed solid while cooling was crystallized with DMF. Yield: 68%, white crystals: mp 177-178 °C. IR (v/cm<sup>-1</sup>): 3247 (NH), 3051 (Ar-H), 1703 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ = 3.50-3.57 (dd, *J* = 20.0, 8.0 Hz, HA), 3.89 (s, 2H, CH2), 4.22-4.29 (dd, *J* = 16.0, 12.0 Hz, HB), 6.18-6.23 (dd, J 12.0, 8.0 Hz, H<sub>x</sub>), 7.17-8.57 (m, 8 H, 3 thienyl-H and 5 indole-H), 11.68 (s, 1H, indole-NH) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 48.2 (pyrazoline-CH<sub>2</sub>), 60.4 (thiazole-CH<sub>2</sub>), 66.5 (pyrazoline-CH), 112.4, 121.2, 122.5, 123.2, 124.6, 125.0, 128.5, 132.1, 134.8, 137.6, 141.1, 142.4, 148.3, 167.8 (CO) ppm. ESIMS *m/z* (%) 366.3 (M<sup>+</sup>, 72%). Anal.Calcd.for C<sub>18</sub>H<sub>14</sub>N<sub>4</sub>OS<sub>2</sub> (366.46): C, 58.99; H, 3.85; N, 15.29; S, 17.50. Found: C, 58.92; H, 3.78; N, 15.20; S, 17.40.

**1-(4-Phenylthiazol-2-yl)-3-(thien-2-yl)-5-(1***H***-indol-3-yl)-2-pyrazoline** (**11**). Phenacyl bromide (0.39 g, 2 mmol) was mixed with 1-thiocarbamoyl-2-pyrzoline **9** (0.65 g, 2 mmol) in ethanol (25 mL) and refluxed for 6 h. The solid obtained upon cooling filtered off and crystallized in 1,4-dioxane. Yield: 64%, brown powder: mp 190-192 °C. IR (ν/cm<sup>-1</sup>): 3151 (NH), 3051 (Ar-H); <sup>1</sup>H NMR (400 MHz, DMSO-*d<sub>6</sub>*): δ = 3.91-3.98 (dd, J = 18.0, 10.0 Hz, H<sub>A</sub>), 4.16-4.23 (dd, J 16.0, 12.0 Hz, H<sub>B</sub>), 6.12-6.18 (dd, J 12.0, 10.0 Hz, H<sub>X</sub>), 7.13-8.15 (m, 14 H, 5 Ar-H, 3-thienyl-H, 5indole-H, and thiazole-H), 9.00 (s, 1H, thiazole-H), 11.70 (s, 1H, indole-NH) ppm;  $^{13}$ C NMR (100 MHz, DMSO*d*<sup>6</sup>): δ = 48.2 (pyrazoline-CH<sub>2</sub>), 60.1 (thiazole-CH<sub>2</sub>), 66.5 (pyrazoline-CH), 101.8, 102.5, 106.3, 108.2, 127.8, 128.0, 128.7, 129.6, 129.9, 130.9, 131.1, 133.9, 134.2, 150.7, 151.8, 158.0, 159.1 ppm. ESIMS *m/z* (%) 429.1 (M<sup>+</sup> , 73%). Anal.Calcd.for C24H18N4S2 (426.56): C, 67.58; H, 4.25; N, 13.13; S, 15.03. Found: C, 67.51; H, 4.18; N, 13.02; S, 15.13.

**General route for the synthesis of 1-arylidenethiazolyl-2-pyrazolines (12-14).** The aromatic aldehydes (2 mmol), anhydrous AcONa (0.40 g), and compound **10** (0.73 g, 2 mmol) were refluxed in AcOH (10 mL) for 6 h. The solution was cooled before being added to broken ice. The solid was obtained through filtration, drying, and crystallization with dioxane, resulting in the formation of products **12-14**.

**1-(5-Benzyliden-4-oxothiazol-2-yl)-3-(thien-2-yl)-5-(1***H***-indol-3-yl)-2-pyrazoline (12**). Yield: 80%, orange powder: mp 230-231 °C. IR (*ν*/cm-1 ): 3130 (NH), 3025 (Ar-H), 1711 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 3.31- 3.39 (dd, J = 24.0, 10.0 Hz, H<sub>A</sub>), 3.90-3.98 (dd, J 20.0, 12.0 Hz, H<sub>B</sub>), 6.11-6.16 (dd, J 12.0, 10.0 Hz, H<sub>X</sub>), 6.84-8.65 (m, 14 H, 5 Ar-H, 3 thienyl-H, 5 indole-H and =CH-), 11.69 (s, 1H, indole-NH) ppm; <sup>13</sup>C NMR (100 MHz, DMSO*d6*): δ 44.2 (pyrazoline-CH2), 66.8 (pyrazoline-CH), 111.6, 112.4, 116.1, 116.5, 118.6, 119.3, 120.9, 121.1, 123.1, 125.8, 125.9, 127.8, 129.8, 130.0, 132.0, 136.6, 137.6, 152.4, 155.8, 160.3, 168.6 (CO) ppm. ESIMS *m/z* (%) 454.4 (M<sup>+</sup>, 62%). Anal.Calcd. for C<sub>25</sub>H<sub>18</sub>N<sub>4</sub>OS<sub>2</sub> (454.57): C, 66.06; H, 3.99; N, 12.33; S, 14.11. Found: C, 66.00; H, 3.97; N, 12.25; S, 14.04.

**1-(5-***p***-Chlorobenzyliden-4-oxothiazol-2-yl)-3-(thien-2-yl)-5-(1***H***-indol-3-yl)-2-pyrazoline** (**13**). Yield: 69%, pale yellow crystals: mp 200-201 °C. IR (*ν*/cm-1 ): 3130 (NH), 3068 (Ar-H), 1710 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 3.32-3.40 (dd, *J* 24.0, 10.0 Hz, HA), 3.91-3.99 (dd, *J* 0.0, 12.0 Hz, HB), 6.12-6.17 (dd, *J* 2.0, 10.0 Hz, HX), 6.90- 8.60 (m, 13 H, 4 Ar-H, 3 thienyl-H, 5 indole-H and =CH-), 11.71 (s, 1H, indole-NH) ppm; ESIMS *m/z* (%) 488.9 (M<sup>+</sup>, 73%) and 491.0 (M<sup>+</sup>+1, 24%). Anal.Calcd. for C<sub>25</sub>H<sub>17</sub>ClN<sub>4</sub>OS<sub>2</sub> (489.01): C, 61.40; H, 3.50; Cl, 7.25; N, 11.46; S, 13.11. Found: C, 61.33; H, 3.42; Cl, 7.14; N, 11.40; S, 13.01.

**1-(5-***p***-Bromobenzyliden-4-oxothiazol-2-yl)-3-(thien-2-yl)-5-(1***H***-indol-3-yl)-2-pyrazoline** (**14**)**.** Yield: 77%, red crystals: mp 220-221 °C. IR (*ν*/cm-1 ): 3145 (NH), 3012 (Ar-H), 1722 (CO); <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 3.46- 3.50 (dd, J 15.0, 7.0 Hz, H<sub>A</sub>), 3.92-3.95 (dd, J 10.0, 8.5 Hz, H<sub>B</sub>), 6.34-6.36 (dd, J 8.5, 7.0 Hz, H<sub>X</sub>), 6.90-8.60 (m, 13 H, 4 Ar-H, 3 thienyl-H, 5 indole-H and =CH-), 11.71 (s, 1H, indole-NH) ppm; ESIMS *m/z* (%) 533.2 (M<sup>+</sup> , 54%) and 534.3 (M<sup>+</sup>+1, 53%). Anal. Calcd.for C25H17BrN4OS<sup>2</sup> (533.46): C, 56.29; H, 3.21; Br, 14.98; N, 10.50; S, 12.02. Found: C, 56.23; H, 3.14; Br, 14.87; N, 10.40; S, 12.18.

**General method for the synthesis of azepines (15 and 16).** A mixture of **1** (0.50 g, 2 mmol) and either *o*phenylenediamine or *o*-aminophenol (2 mmol) in ethanol (10 mL) along with triethylamine (3-4 drops) was refluxed for 10 h. The solution was subjected to cooling at 0 °C and permitted to stand overnight. The solid product was filtered off, rinsed with water, and then purified in 1,4-dioxane.

**4-(Thieny-2-yl)-2-(indol-3-yl)-2,3-dihydro-1***H***-benzo[***b***][1,4]diazepine** (**15**). Yellow crystals: mp 223-225 °C. IR (*ν*/cm-1 ): 3333 (NH), 3172 (indole-NH), 3074 (Ar-H) cm-1 . <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ = 3.13-3.20 (dd, *J* 16.0, 12.0 Hz, H<sub>A</sub>), 3.81-3.88 (dd, J 15.2, 13.2 Hz, H<sub>B</sub>), 4.25 (s, 1H, NH), 5.00-5.56 (dd, J 13.2, 12.0 Hz, H<sub>Z</sub>), 7.24-8.56 (m, 12H, thienyl-H, indole-H, and benzodiazepine-H), 12.48 (s, 1H. indole-NH) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ = 18.5 (CH2), 46.2 (CH), 60.2, 68.6, 116.2, 118.4, 120.9, 121.6, 122.04, 132.87, 133.6, 137.5, 137.8, 145.5, 150.4, 153.3, 155.2, 155.9, 158.0. ESIMS  $m/z$  (%) 343.2 [M<sup>+</sup>] (77). Anal.Calcd. for C<sub>21</sub>H<sub>17</sub>N<sub>3</sub>S (343.44): C, 73.44; H, 4.99; N, 12.23; S, 9.34. Found: C, 73.39; H, 4.93; N, 12.13; S, 9.23.

**4-(Thieny-2-yl)-2-(indol-3-yl)-2,3-dihydrobenzo[***b***][1,4]oxazepine (16).** White solid: mp 230-232 °C. IR (*ν*/ cm<sup>-1</sup>): 3148 (indole-NH), 3008 (Ar-H) cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ = 3.30-3.40 (dd, J = 24.0, 16.0 Hz, H<sub>A</sub>), 4.10-4.19 (dd, J 20.0, 18.0 Hz, H<sub>B</sub>), 5.70-5.78 (dd, J 18.0, 16.0 Hz, H<sub>Z</sub>), 7.20-8.60 (m, 12H, thienyl-H, indole-H, and benzodioxazepine-H), 12.32 (s, 1H. indole-NH) ppm; <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ = 20.3 (CH2), 48.9 (CH), 62.0, 70.2, 116.4, 118.5, 120.8, 121.5, 122.4, 123.8, 125.9, 132.7, 133.5, 137.4, 137.3, 145.0, 150.2, 153.0, 155.6, 155.8, 158.2. ESIMS  $m/z$  (%) 344.1 [M<sup>+</sup>] (70). Anal.Calcd. for C<sub>21</sub>H<sub>16</sub>N<sub>2</sub>OS (344.43): C, 73.23; H, 4.68; N, 8.13; S, 9.31. Found: C, 73.16; H, 4.60; N, 8.02; S, 9.24.

#### **Biological activity**

**In vitro antimicrobial assay procedure.** The studied compounds **2-16** were dissolved in DMSO resulting in a 5% solution. The resulting solution was applied to saturate filter paper discs (Whatman No. 3 and 5 mm in diameter). The discs were set on the surface of solidified nutrient agar dishes seeded with the bacteria that were examined (*Gram positive; Bacillus cereus and Staphylococcus aureus, and Gram negative; Pseudomonas aruginose or Escherichia coli*) or Czapek Dox agar dishes seeded with the fungi that were investigated (*Geotrichum candidum, Candida albicans, Trichophyton rubrum, and Aspergillus flavus*). The diameter of inhibiting zones (mm) was measured at the end of the incubation period (24-48 h) at 37 °C for bacteria and 28 °C with fungi (4-7 days) [48]. Discs soaked with DMSO were employed as controls. *Chloramphenicol* and *Clotrimazole* were chosen as references. The biologically active compounds were subsequently diluted with DMSO to produce an array of concentrations with the goal to ascertain each compound's *MIC*. The *MIC* values were calculated as μg/mL **Tables 1** and **2** provide the antibacterial and antifungal activity data.

#### **Acknowledgement**

The authors extend their appreciation to the Researchers Supporting Project (RSPD2024R758), King Saud University, Riyadh, Saudi Arabia.

### **Funding Information**

This work was funded by the Researchers Supporting Project (RSPD2024R758), King Saud University, Riyadh, Saudi Arabia.

#### **Supplementary Material**

The FTIR spectra, <sup>1</sup>H NMR and <sup>13</sup>C NMR of the new compounds can be found in the supplementary material file.

#### **References**

- 1. Lou, X.; Yang, Y. Y. W. *J. Am. Chem. Soc.* **2021**, *28*, 11976-11981. <https://doi.org/10.1021/jacs.1c07006>
- 2. Henry, G. D. *Tetrahedron* **2004,** *60*, 6043. <https://doi.org/10.1016/j.tet.2004.04.043>
- 3. Brycki, B.; Małecka, I.; Koziróg, A.; Otlewska, A. *Molecules* **2017**, *22*, 130. <https://doi.org/10.3390/molecules22010130>
- 4. Leal, B.; Afonso, I. F.; Rodrigues, C. R.; Abreu, P. A.; Garrett, R.; Pinheiro, L. C. S.; Azevedo, A. R.; Borges, J. C.; Vegi, P. F.; Santos, C. C. C. *Bioorg. Med. Chem*. **2008,** *16***,** 8196-8204. <https://doi.org/10.1016/j.bmc.2008.07.035>
- 5. Zav'yalova, V. K.; Zubarev, A. A.; Shestopalov, A. M. *Russ. Chem. Bull*. **2009,** *58***,** 1939-1944. <https://doi.org/10.1007/s11172-009-0265-2>
- 6. Bernardino, A. M. R.; da Silva Pinheiro, L. C.; Rodrigues, C. R.; Loureiro, N. I.; Castro,
- H. C.; Lanfredi-Rangel, A.; Sabatini-Lopes, J.; Borges, J. C.; Carvalho, J. M.; Romeiro, G. A. *Bioorg. Med. Chem*. **2006,** *14***,** 5765-5777.

<https://doi.org/10.1016/j.bmc.2006.03.013>

- 7. Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.; Ishikawa, N.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S. *Bioorg. Med. Chem*. **2007,** *15***,** 403-412. <https://doi.org/10.1016/j.bmc.2006.09.047>
- 8. Truong, D. T.; Ho, K.; Nhi, H. T. Y.; Nguyen, V. H.; Dang, T. T.; Nguyen*,* M. T. *Sci. Rep*. **2024**, *28*, 12218. <https://doi.org/10.1038/s41598-024-62743-3>
- 9. Janković, Ð. D.; Šestić, T. L., Bekić, S. S.; Savić, M. P.; Ćelić, A. S.; Scholda, J.; Kopp, F.; Marinović, M. A.; Petri, E. T.; Ajduković, J. J. *J. Steroid Biochem. Mol. Biol.* **2024**, *16*, 106545. <https://doi.org/10.1016/j.jsbmb.2024.106545>
- 10. Li, A.; Huang, K.; Pan, W.; Wu, Y.; Liang, Y.; Zhang, Z.; Wu, D.; Ma, L.; Gou, Y. *J. Med. Chem*. **2024,** *67*, 9091– 9103.

<https://doi.org/10.1021/acs.jmedchem.4c00257>

- 11. Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H. R.; Jahani, M.; Imanparast, S.; Faramarzi, M. A.; Mahdavi, M. *New J. Chem.* **2018**, *42*, 17268-17278. <https://doi.org/10.1039/C8NJ02495B>
- 12. Suresh, L.; Kumar, P. S. V.; Onkar, P.; Srinivas, L.; Pydisetty, Y.; Chandramouli, G. V. P. *Res. Chem. Intermed.* **2017,** *43*, 5433-5451.

<https://doi.org/10.1007/s11164-017-2938-z>

- 13. Podila, N.; Penddinti, N. K. Rudrapal, M. Rakshit, G.; Konidala, S. K.; Pulusu, V. S.; Bhandare, R. R.; Shaik, A. B. *Heliyon* **2024,** *10*, e29390. <https://doi.org/10.1016/j.heliyon.2024.e29390>
- 14. Bharate, S. B.; Mahajan, T. R.; Gole, Y. R.; Nambiar, M.; Matan, T. T.; Kulkarni-Almeida, A.; Balachandran, S.; Junjappa, H.; Balakrishnan, A.; Vishwakarma, R. A. *Bioorganic Med. Chem.* **2008,** *16***,** 7167-7176. <https://doi.org/10.1016/j.bmc.2008.06.042>
- 15. Hamblin, J. N.; Angell, T. D. R.; Ballantine, S. P.; Cook, C. M.; Cooper, A. W. J.; Dawson, J.; Delves, C. J.; Jones, P. S.; Lindvall, M.; Lucas, F. S. *Bioorganic Med. Chem. Lett.* **2008,** *18*, 4237-4241. <https://doi.org/10.1016/j.bmcl.2008.05.052>
- 16. Tok, F.; Erdoğan, Ö.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. *Acta Chim. Slov.* **2022**, *69,* 293-303. <https://doi.org/10.17344/acsi.2021.7119>
- 17. Chen, K.; Zhang, Y. L.; Fan, J.; Ma, X.; Qin, Y. J.; Zhu, H. L. *Eur. J. Med. Chem*. **2018,** *156*, 722-737.

<https://doi.org/10.1016/j.ejmech.2018.07.044>

18. Sever, B.; Altıntop, M. D.; Radwan, M. O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H. I. *Eur. J. Med. Chem.* **2019**, *182*, 111648.

<https://doi.org/10.1016/j.ejmech.2019.111648>

19. Gomha, S. M.; Abdelaziz, M. R.; Kheder, N. A.; Abdel-Aziz, H. M.; Alterary, S.; Mabkhot, Y. N. *Chem. Cent. J.* **2017**, 11, 105.

<https://doi.org/10.1186/s13065-017-0335-8>

- 20. Abdel-Wahab, B. F.; Abdel-Aziz, H. A.; Ahmed, E. M. *Eur. J. Med. Chem.* **2009,** *44*, 2632-2635. <https://doi.org/10.1016/j.ejmech.2008.09.029>
- 21. Pola, S.; Banoth, K. K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. *Med. Chem. Res*. **2020**, *29*, 1819- 1835.

<https://doi.org/10.1007/s00044-020-02602-8>

- 22. Dawane, B. S.; Konda, S. G.; Mandawad, G. G.; Shaikh, B. M. *Eur. J. Med. Chem.* **2021**, *45*, 387-392. <https://doi.org/10.1016/j.ejmech.2009.10.015>
- 23. Hassan, S. Y. *Molecules* **2013**, *18*, 2683-2711. <https://doi.org/10.3390/molecules18032683>
- 24. Dhonnar, S. L.; Jagdale, B. S.; Adole, V. A.; Sadgir, N. V. *Mol. Divers.* **2023**, *27*, 2441-2452. <https://doi.org/0.1007/s11030-022-10562-x>
- 25. Karad, S. C.; Purohit, V. B.; Thakor, P.; Thakkar, V. R.; Raval, D. K. *Eur. J. Med. Chem.* **2016**, *112*, 270-279. <https://doi.org/10.1016/j.ejmech.2016.02.016>
- 26. Ramírez-Prada, J.; Robledo, S. M.; Vélez, I. D.; Crespo, M. D. P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. *Eur. J. Med. Chem.* **2017**, *131*, 237-254. <https://doi.org/10.1016/j.ejmech.2017.03.016>
- 27. Deng, H.; Yu, Z. Y.; Shi, G. Y.; Chen, M. J.; Tao, K.; Hou, T. P. *Chem. Biol. Drug Des.* **2012**, *79*, 279-789. <https://doi.org/10.1111/j.1747-0285.2011.01308.x>
- 28. Ovais, S., Pushpalatha, H., Reddy, G. B., Rathore, P., Bashir, R., Yaseen, S. Javed, K. *Eur. J. Med. Chem*. **2014**, *80,* 209-217.

<https://doi.org/10.1016/j.ejmech.2014.04.046>

- 29. Mantzanidou, M., Pontiki, E., Hadjipavlou-Litina, D. *Molecules* **2021**, *26*, 3439. <https://doi.org/10.3390/molecules26113439>
- 30. Vasudha, D.; Jagadeesh, A.; Mali, S. N.; Bhandare, R. R.; Shaik, A. B. *Chem. Phys. Impact* **2024**, *8*, 100500. <https://doi.org/10.1016/j.chphi.2024.100500>
- 31. Abeed, A. A. O.; Abdel Jaleel, G. A.; Youssef, M. S. K. *Curr. Org. Synth.* **2019,** *16*, 921-930. <https://doi.org/10.2174/1570179416666190703115133>
- 32. Asif, M.; Almehmadi, M. M.; Alsaiari, A.; Allahyani, M. *Curr. Org. Synth.* **2023,** *21***,** 858-888. <https://doi.org/10.2174/0115701794260444230925095804>
- 33. Ziarani, G. M.; Hasani, S.; Mohajer, F.; Varma, R. S.; Rafiee, F. *Top Curr. Chem.* **2022,** *380*, 24. <https://doi.org/10.1007/s41061-022-00379-5>
- 34. Venugopala, K. N.; Habeebuddin, M.; Aldhubiab, B. E.; Asif, A. H. *Molecules* **2021**, *26*, 5235. <https://doi.org/10.3390/molecules26175235>
- 35. Böttcher, C.; Chapman, A.; Fellermeier, F.; Choudhary, M.; Scheel, D.; Glawischnig, E. *Plant Physiol.* **2014**, *165*, 841-853.

```
 https://doi.org/10.1104/pp.114.235630
```
36. Gallego-Yerga, L.; Chiliquinga, A. J.; Peláez, R. *Int. J. Mol. Sci.* **2023**, *24*, 11093.

<https://doi.org/10.3390/ijms241311093>

- 37. Chen, H.; Deng, S.; Albadari, N.; Yun, M. K.; Zhang, S.; Li, Y.; Ma, D.; Parke, D. N.; Yang, L.; Seagroves, T. N.; White, S. W.; Miller, D. D.; Li, W. *J. Med. Chem.* **2024**, *64*, 12049-12074. <https://doi.org/10.1021/acs.jmedchem.1c00715>
- 38. Song, M.; Hua ,Y.; Liu Y.; Xiao, X.; Yu, H.; Deng, X. *Molecules* **2023**, *28*, 6325. <https://doi.org/10.3390/molecules28176325>
- 39. Aboshouk , D. R.; Youssef, M. A.; Bekheit ,M. S.; Hamed A. R.; Girgis, A. S. *RSC Adv.* **2024**, *14*, 5690-5728. <https://doi.org/10.1039/D3RA08962B>
- 40. Yadav, R.; Meena, D.; Singh, K.; Tyagi, R.; Yadav, Y.; Sagar, R. *RSC Adv.* **2023**, *13*, 21890-21925. <https://doi.org/10.1039/D3RA03862A>
- 41. Rupa, S. A.; Moni, M. R.; Patwary, M. A. M.; Mahmud, M. M.; Haque, M. A.; Uddin J, Abedin, S. M. T. *Molecules,* **2022**, *27*, 1656. <https://doi.org/10.3390/molecules27051656>
- 42. Hassneen, H. M.; Abdallah, T. A. *Molecules,* **2003,** *8*, 333-341. <https://doi.org/10.3390/80300333>
- 43. Mabkhot , Y. N.; Alatibi, F.; El-Sayed. N. N.; Al-Showiman, S.; Kheder, N. A.; Wadood, A.; Rauf A.; Bawazeer S.; Hadda, T. B. *Molecules* **2016**, *21*, 222. <https://doi.org/10.3390/molecules21020222>
- 44. Mete, E.; Gul, H. I.; Kazaz, C. *Molecules* **2007**, *12*, 2579-2588. <https://doi.org/10.3390/12122579>
- 45. Akulov, A. A.; Varaksin, M. V.; Charushin, V. N.; Chupakhin, O. N. *ACS Omega* **2019**, *10*, 825-834. <https://doi.org/10.1021/acsomega.8b02916>
- 46. Meleddu, R.; Petrikaite, V.; Distinto, S.; Arridu, A.; Angius, R.; Serusi, L.; Škarnulytė, L.; Endriulaitytė, U.; Paškevičiu, Te. M.; Cottiglia, F.; Gaspari, M.; Taverna, D.; Deplano, S.; Fois, B.; Maccioni, E. *ACS Med. Chem. Lett.* **2018**, *10*, 571.

<https://doi.org/10.1021/acsmedchemlett.8b00596>

47. Tsukerman, S. V.; Nikitchenko, V. M.; Bugai, A. I.; Lavrushine, V. F. *Chem. Heterocycl. Comp.* **1969**, *5*, 268- 272.

<https://doi.org/10.1007/BF00475844>

**√**

48. Kwon-Chung, K. J.; Bennett J. E. *Medical Mycology,* Lea & Febiger, Philadelphia, PA **1992**, 866.

## **ACCEPTED COPY. DO NOT DELETE THIS MESSAGE.**

#### **This manuscript has been corrected by the author, checked by the Scientific Editor, and contains all necessary changes.**

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/)

**By checking the following box, the senior author acknowledges that they and the other authors have read, understood, and complied with the Instructions to Authors (ItA).**