Supplementary Material

Microwave-assisted synthesis of novel [1,4] oxazine derivatives as potent antibacterial and antioxidant agents

Betokali K. Zhimomi,^a Manthae Phom, ^a Phitovili Achumi,^a Putusenla Imchen,^a Khonzani Yanthan,^a Shokip Tumtin,^b and Tovishe Phucho^{a*}

a Department of Chemistry, Nagalad Univerity, Lumami 798627, Zunheboto, Nagaland, India b Department of Chemistry, Fazl Ali College, Mokukchung 798601, Nagaland, India Email: <u>itphucho@nagalanduniversity.ac.in</u>

Table of Contents

Material and methods	S2
Table 2. Minimum Inhibition Zone (mm) of synthesized compounds	S3
Table 3. Minimum Inhibition Concentration of synthesized compounds	S4
Table 4. IC ₅₀ values of the standard Trolox and the sample	S5
Figure 1. DPPH free-radical scavenging activity in the presence of different concentrations of Trolog and the synthesised oxazines	x .S6
Figure 2. Antioxidant activity of standard (Trolox) and the synthesised oxazines using FRAP assay	S7
Mass Spectra of Xa	S8
Mass Spectra of Compound 4a-I	S9

MATERIALS AND METHODS

All reagents were purchased from Merck and used without purification. Reactions were carried out in Microwave Digester (Anton paar Monowave 400). Melting points were measured on Ikon melting point apparatus and compared with reported values of known compounds. IR spectra were recorded on FTIR spectrometer (Perkin Elmer 1725X, Model: Spectrum Two FT-IR). Mass spectra were recorded on mass spectrophotometer (Advion expressions). NMR spectra were recorded with a Bruker spectrometer at 400 MHz (¹H NMR) and at 100 MHz (¹³C NMR) in CDCl₃ as solvent and with TMS as internal standard; and chemical shifts are expressed as d/ppm.

Antibacterial activity:

In Vitro Antibacterial studies: All the synthesized compounds were screened for their anti-bacterial activity against two Gram-positive bacteria viz. *Bacillus subtilis* (BS) and *Staphylococcus aureus* (SA), and two Gram-negative bacteria viz. *Escherichia coli* (EC) and *Klebsiella pneumonia* (KP). Well diffusion method was used for the *in-vitro* anti-bacterial studies and the activity was determined by measuring the diameter of inhibition zones (mm); also, the Minimum inhibitory concentrations [MIC] were determined employing standard two-fold serial broth dilution method. 2mg/ml of DMSO concentration was used where DMSO was used as a negative control and Streptomycin was used as a positive control.

Anti-oxidant activity:

In Vitro antioxidant assays: The antioxidant activity of the sample was evaluated utilizing two separate assays: DPPH and FRAP. The antioxidant activity of the sample was tested using the two assays and compared with the standard Trolox. The experiments were carried out in triplicate and the results were averaged. The IC₅₀ values for the standard and the sample were derived for the DPPH assay. The DPPH free-radical scavenging per-centage was calculated using the measured absorbance as follows:

DPPH scavenging activity (%) = $(A_{\text{control}} - A_{\text{sample}}) / A_{\text{control}} *100$

where A_{control} is the absorbance of the control (DPPH +methanol) and A_{sample} is the absorbance of the sample compound.

TheIC50 values were used to assess the antioxidant activity. For the FRAP assay, the absorbance of the reaction mixture was measured at 700 nm using a UV/Vis spectrophotometer. Greater absorbance indicated greater reducing power.

Table 2. Minimum Inhibition Zone (mm) of synthesized compounds

Compound (2mg/L)	Minimum Inhibition Zone (mm)				
	Gram Negative Bacteria		Gram-Positive Bacteria		
-	КР	EC	BS	SA	
4 a	13	14	11	13	
4b	12	10	14	14	
4c	10	11	11	13	
4d	16	10	18	14	
4e	15	14	15	14	
4f	18	16	17	13	
4g	14	16	17	18	
4h	13	13	15	-	
4 i	12	11	16	-	
4 j	14	19	19	14	
4k	10	-	-	15	
41	13	12	13	14	
Streptomycin	22	23	22	23	

Table 3.	Minim	um Inhil	oition Conce	entration o	f synthe	sized com	pounds	

Compound	Minimum Inhibition Concentration (mg/L)				
(2mg/L) -	Gram Negative Bacteria		Gram-Positive Bacteria		
-	КР	EC	BS	SA	
4a	0.046	0.046	0.75	0.046	
4b	0.375	0.75	0.187	0.187	
4c	0.75	0.75	0.75	0.375	
4d	0.046	0.75	0.023	0.187	
4e	0.187	0.187	0.046	0.046	
4f	0.023	0.046	0.046	0.046	
4g	0.187	0.046	0.023	0.023	
4h	0.046	0.046	0.187	-	
4i	0.375	0.75	0.046	-	
4 j	0.187	0.005	0.005	0.187	
4k	0.75	-	-	0.046	
41	0.046	0.375	0.046	0.046	
Streptomycin	0.00729	0.00729	0.00729	0.00729	

Table 4. IC50 values	of the standard Tr	rolox and the sample
	or the standard fr	olox and the sumple

Compound	IC ₅₀ (μg/ml)
4a	50.34
4b	54.29
4c	66.01
4d	43.98
4e	51.69
4f	77.48
4g	52.92
4h	68.12
4i	49.96
4j	68.03
4k	71.73
41	48.35
Trolox	79.86

Figure 1. DPPH free-radical scavenging activity in the presence of different concentrations of Trolox and the synthesised oxazines.

Mass spectra of Xa

¹HNMR of Compounds Xa

¹³CNMR of Compounds Xa

Mass spectra of 4a

¹HNMR of Compounds 4a

¹HNMR of Compounds 4b

¹³CNMR of Compounds 4b

Mass spectra of 4c

¹HNMR of Compounds 4c

¹³CNMR of Compounds 4c

Mass spectra of 4d

¹³CNMR of Compounds 4d

Mass spectra of 4e

¹HNMR of Compounds 4e

¹³CNMR of Compounds 4e

Mass spectra of 4f

Mass spectra of 4g

¹HNMR of Compounds 4g

¹³CNMR of Compounds 4g

Mass spectra of 4h

¹³CNMR of Compounds 4h

Mass spectra of 4i

¹³CNMR of Compounds 4i

Mass Spectra of 4j

¹HNMR of Compounds 4j

Mass Spectra of 4k

4E+08

-4E+08

-4E+08

-3E+08

-2E+08

-2E+08

-2E+08

-1E+08

-5E+07

-0

ò

2.88 4

2

1

3

16

15

14

13

12

11

10

9

7-2

8 f1 (ppm)

2.02 2.01 2.11 2.11 2.11 1.23 1.57 1.03 1.03

7

"\\

1.12

5

6

۲

3.90

4

¹HNMR of Compounds 4k

Mass Spectra of 4I

¹HNMR of Compounds 4I

¹³CNMR of Compounds 41

