Supplementary Material

Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol

Karl Mugford, Louise R. Smith, Mark Douthwaite, Nicholas F. Dummer, David J. Willock, Graham J. Hutchings, and Stuart H. Taylor*

Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF24 4HQ, United Kingdom E-mail: <u>taylorsh@cardiff.ac.uk</u>

Table of Contents

Calculations	S2
Table 1	S3
Table 2	S4
Table 3	S6
Table 4	S7
Table 5	S8
Table 6	
Table 7	S10
Table 8	S11
Table 9	S12
Table 10	S13
References	S14

Calculations

Equation (1) was used to calculate the glycerol conversion (C_{gly}) based on the molar difference between the carbon moles of glycerol fed into the reactor $g_{m in}$ compared to those detected in the reaction mixture $g_{m out}$:

$$C_{GLY} (\%) = \left(\frac{g_{m in} - g_{m out}}{g_{m in}}\right) \times 100$$
(1)

The product selectivity (S_x) for any product, x, was calculated from the moles of carbon recovered in product x, (x_{cm}) divided by the sum of moles of carbon in all detected products, y_{Cm} (2):

$$S_{x} (\%) = \left(\frac{X_{cm}}{\Sigma_{y} y_{cm}}\right) \times 100$$
⁽²⁾

The carbon balance X_{cb} (3) was calculated by dividing the sum of the carbon moles of the reaction products X_{cp} , coke X_{coke} and unreacted glycerol g_{mol} by the amount of carbon moles injected into the reactor g_{mi} . Sum of reaction product carbon moles was calculated *via* combining the products identified in the liquid fractions, (GC1) with that of the gas fraction of the reaction stream (GC2). Liquid HMWPs were not included in this calculation as unanalysed.

$$X_{cb}(\%) = \left(\frac{X_{cp} + X_{coke} + g_{mo}}{g_{mi}}\right) \ge 100$$
(3)

Carbon deposition in the form of catalyst coke (4) was estimated from the mass loss *via* TGA of the post reaction catalyst. The mass of carbon lost was converted to the number of moles of carbon retained on the catalyst $(X_{coke})m_{lost}$, by the moles of carbon fed into the reactor $g_{mi.}$

$$Coke \ (\%) = \left[\frac{m_{lost}}{g_{mi}}\right] \times 100 \tag{4}$$

Space time yield of product x was calculated (5) from the mass of product m_x produced per hour (reaction time Rt), per mass of catalyst (m_{cat} , Kg).

$$STY_X \ (g_X \ h^{-1} \ kg_{cat}^{-1}) = \left(\frac{m_X \ (g)}{Rt(h) \ x \ m_{cat}(kg)}\right)$$
(5)

Figure S1: XRD patterns for (a) commercial Mg(OH)₂, (b) MgO after calcination at 450 °C for 2 h, (c) Mg(OH)₂ after refluxing in water and drying at 110 °C for 16 h.

Table S1. Crystallite sizes for Mg(OH)₂ before and after reflux and drying

Sample	Crystallite size / nm
Commercial Mg(OH) ₂	51
MgO after 2 h calcination at 450 °C	32
Mg(OH) ₂ after reflux and drying	11

Figure S2. Thermogravimetric analysis (TGA) of Mg(OH)₂ showing mass loss as temperature is increased.

Table S2. Literature values f	or DRIFTS adsorption	n bands basic sites and CO ₂ species.
		and busic sites and coz species.

	ОН	0 ²⁻	Mg ²⁺ -O ²
Reference	Bicarbonate /	Monodentate	Bidentate & tridentate
	hydrogen	carbonates (cm ⁻¹)	carbonates (cm⁻¹)
	carbonates (cm -1)		
1	1220 asymmetric	1360–1400	1610 – 1630 symmetric
	1480 asymmetric	symmetric	
	1650 asymmetric		1320–1340 symmetric
		1510 – 1560	
		asymmetric	
2		1370–1590 general	1270 – 1390 general area
		area attributed	attributed
		1440 v_{3high} DFT	1620 – 1710 general area
		(110)	attributed
		1378 v _{3low} DFT	1680 v _{3high} Drifts
		(110)	1650-1730 ν _{3high} DFT
			1125-1200 v _{3low} DFT
			1651 v _{3high} Drifts (tridentate 100)
			1304 v _{3low} Drifts (tridentate 100)
			1600-1650 v _{3high} DFT (tridentate
			100)
			1280-1300 v _{3low} DFT (tridentate
			100)

			1516 v _{3high} Drifts (tridentate 100) 1347 v _{3low} Drifts (tridentate 100) 1560 v _{3high} DFT (tridentate 100) 1330 v _{3low} DFT (tridentate 100)
3	1655–1658 v ₂ 1405–1419 v3	1510–1550 v _{3high} 1390–1410 v _{3low}	
4	1220–1223 v4 1480 v ₃ 1250 v ₄	1035–1050 v ₁ 1590,1510 v _{3high} 1415 v _{3low}	1385,1335 v _{3low}
5	1650 v ₂ 1510,1408 v3 1220 v4		
6		1550 v _{3high} 1410 v _{3low} 1050 v ₁	
7		1520 ν _{3high} 1370 ν _{3low} 1060 ν ₁	1670, 1630 ν _{3high} 1270 ν ₁
8		1550 ν _{3high} 1410 ν _{3low} 1050 ν ₁	1670,1630 v _{3high} 1315,1280 v _{3low} 1000,850 v ₁ 950,830 v ₁

<u>Product</u>	<u>Retention time / minutes</u>		
	GC1 (liq FID)	GC1 (gas FID)	GC1 (Gas TCD)
Acetaldehyde	2.1	2.05	
Propionaldehyde	2.6		
Acetone	2.8	2.35	
Acrolein	3.0	2.64	
Butyraldehyde	3.3		
Methanol	3.5	2.95	
2-propanol	3.9		
Ethanol	4.0		
2,3-butanedione	4.6		
2-butanol	5.4		
1-propanol	5.7		
3-hexanone	6.0		
2-hexanone	6.3		
2-methyl-1-	6.9		
propanol			
allyl alcohol	7.0		
Cyclopentanone	8.6		
Hydroxyacetone	8.8		
3-ethoxy-1-	8.9		
propanol			
acetic acid	9.4		
Glycidol	9.9		
propionic acid	10.1		
1,2-propanediol	10.8		
ethylene glycol	11.0		
1,3-propanediol	12.3		
Phenol	15.2		
unreacted	17.2		
glycerol			
CO			4.5
CO ₂			5.4

 Table S3. Product list from GC analysis.

Table S4. Influence of heat treatment temperature – catalyst product selectivity results. Reaction conditions; 360 °C, 50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours

Carbon mole selectivity / %	MgO_450	MgO_550	MgO_650	MgO_750
Acetaldehyde	19.7	17.4	20.2	21.6
Propionaldehyde	0.6	0.1	0.6	0.6
Acetone	0.1	0.3	0.1	0.1
Acrolein	13.4	11.2	12.7	12.8
Butyraldehyde	0.0	0.0	0.0	0.0
Methanol	11.9	10.1	9.8	11.4
2-propanol	0.6	0.0	0.4	0.6
Ethanol	0.0	0.6	0.1	0.0
2,3-butanedione	1.2	1.4	1.1	1.3
2-butanol	0.1	0.1	0.0	0.1
1-propanol	0.1	0.1	0.1	0.0
3-hexanone	0.0	0.1	0.0	0.0
2-hexanone	0.0	0.0	0.0	0.0
2-methyl-1-propanol	0.0	0.0	0.0	0.0
allyl alcohol	0.8	0.7	0.6	0.8
Cyclopentanone	0.6	0.7	0.3	0.6
Hydroxyacetone	23.2	28.3	23.7	23.9
3-ethoxy-1-propanol	0.9	0.7	0.9	0.9
acetic acid	0.5	1.3	0.5	0.4
Glycidol	1.0	0.9	2.9	1.6
propionic acid	0.3	0.9	0.2	0.2
1,2-propanediol	2.1	2.7	2.6	2.2
unknown(s)	8.3	8.1	8.4	7.6
ethylene glycol	8.2	9.3	9.2	8.1
1,3-propanediol	0.8	0.5	0.8	0.6
Phenol	0.1	0.2	0.3	0.0
CO	2.8	2.2	2.7	2.8
CO2	2.7	1.8	1.9	2.0
Glycerol conversion %	87	84	75	80
Carbon balance %	74	78	98	79
MeOH S.T.Y g h ⁻¹ kg h ⁻¹	80	77	90	83
coke % carbon	3	2.9	3.2	2
carbon deposition mg g ⁻¹	89	79	106	44

Table S5. Total organic carbon CHN analysis – MgO_650. Reaction conditions; 360 °C ,50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours.

Carbon component	%
Catalyst coking (TGA)	3.2
Gas analysis (GC)	8.7
Liquid analysis (GC)	85.7
Liquid analysis (CHN)	85.1
Total Carbon	98

Figure S3. LCMS chromatogram for the reaction mixture of MgO_450 (a) and MgO_650 (b) at 360 °C 50 wt.% glycerol.

Table S6. Influence of heat treatment temperature C – catalyst product Space time yield g h⁻¹ kg⁻¹ cat results. Reaction conditions; 360 °C, 50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours

S.T.Y / g h ⁻¹ kg ⁻¹ cat	MgO_450	MgO_550	MgO_650	MgO_750
Acetaldehyde	92	83	118	98
Propionaldehyde	2	1	3	2
Acetone	0	1	1	0
Acrolein	53	45	64	49
Butyraldehyde	0	0	0	0
Methanol	80	77	90	83
2-propanol	3	0	3	3
ethanol	0	3	1	0
2,3-butanedione	6	6	8	6
2-butanol	0	0	0	0
1-propanol	1	1	1	0
3-hexanone	0	0	0	0
2-hexanone	0	0	0	0
2-methyl-1-propanol	0	0	0	0
allyl alcohol	3	3	4	3
cyclopentanone	2	2	1	2
hydroxyacetone	122	152	173	122
3-ethoxy-1-propanol	4	3	6	4
acetic acid	3	8	4	3
Glycidol	8	7	32	12
propionic acid	1	4	0	1
1,2-propanediol	12	15	19	11
unknown(s)	0	0	0	0
ethylene glycol	54	63	71	52
1,3-propanediol	4	3	6	3
phenol	0	1	2	0
СО	17	14	19	16
CO2	25	18	24	18
Glycerol conversion %	87	84	75	80
Carbon balance %	74	78	98	79
MeOH S.T.Y g h ⁻¹ kg h ⁻¹	80	77	90	83
coke % carbon	3	2.9	3.2	2
carbon deposition mg g ⁻¹	89	79	106	44

Table S7. Product selectivity - MgO_450 D₂O and H₂O experiments compared. Reaction conditions; 360 °C, 50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours

Carbon mole selectivity / %	D ₂ O	H ₂ O
Acetaldehyde	13.8	18.6
propionaldehyde	0.5	0.3
acetone	0.2	0.2
acrolein	10.8	12.5
butyraldehyde	0.0	0.0
methanol	9.9	11.5
2-propanol	0.0	0.4
ethanol	0.5	0.3
2,3-butanedione	0.8	1.2
2-butanol	0.0	0.1
1-propanol	0.1	0.1
3-hexanone	0.1	0.1
2-hexanone	0.0	0.0
2-methyl-1-propanol	0.0	0.0
allyl alcohol	0.7	0.8
cyclopentanone	0.5	0.6
hydroxyacetone	28.6	23.4
3-ethoxy-1-propanol	1.5	0.9
acetic acid	1.0	0.8
Glycidol	0.5	0.8
propionic acid	1.6	0.6
1,2-propanediol	3.0	2.3
unknown(s)	9.6	7.9
ethylene glycol	12.2	9.5
1,3-propanediol	0.8	0.9
phenol	0.2	0.1
СО	1.7	2.7
CO2	1.6	3.4
Glycerol conversion	54	87
Carbon balance	98	74
MeOH S.T.Y. g h-1 kg h-1	65	80
coke % Carbon	3.5	3.2
carbon deposition mg g	95	89

Table S8. Product selectivity - MgO_550 D₂O and H₂O experiments compared. Reaction conditions; 360 °C, 50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours

Carbon mole selectivity / %	D_2O	H ₂ O
Acetaldehyde	13.0	17.4
Propionaldehyde	0.5	0.1
Acetone	0.1	0.3
Acrolein	10.0	11.2
Butyraldehyde	0.0	0.0
Methanol	10.0	10.1
2-propanol	0.0	0.0
Ethanol	0.5	0.6
2,3-butanedione	0.7	1.4
2-butanol	0.0	0.1
1-propanol	0.1	0.1
3-hexanone	0.1	0.1
2-hexanone	0.0	0.0
2-methyl-1-propanol	0.0	0.0
allyl alcohol	0.8	0.7
cyclopentanone	0.5	0.7
hydroxyacetone	28.6	28.3
3-ethoxy-1-propanol	0.7	0.7
acetic acid	0.9	1.3
Glycidol	0.5	0.9
propionic acid	1.2	0.9
1,2-propanediol	3.6	2.7
unknown(s)	14.3	8.1
ethylene glycol	11.0	9.3
1,3-propanediol	0.9	0.5
Phenol	0.1	0.2
CO	1.4	2.2
CO2	0.5	1.8
Glycerol conversion %	53	80
Carbon balance %	103	78
MeOH S.T.Y g h ⁻¹ kg h ⁻¹	66	77

Table S9. Product selectivity - MgO_650 D₂O and H₂O experiments compared. Reaction conditions; 360 °C, 50 wt.% glycerol/water flow 0.016 mL min⁻¹, 0.5 g MgO, 50 mL min⁻¹ Ar, 3 hours

Carbon mole selectivity / %	D ₂ O	H ₂ O
Acetaldehyde	17.0	20.2
propionaldehyde	0.6	0.6
acetone	0.5	0.1
acrolein	10.9	12.7
butyraldehyde	0.0	0.0
methanol	10.6	9.8
2-propanol	0.0	0.4
ethanol	0.6	0.1
2,3-butanedione	1.1	1.1
2-butanol	0.0	0.0
1-propanol	0.1	0.1
3-hexanone	0.0	0.0
2-hexanone	0.0	0.0
2-methyl-1-propanol	0.0	0.0
allyl alcohol	0.8	0.6
cyclopentanone	0.6	0.3
hydroxyacetone	26.7	23.7
3-ethoxy-1-propanol	1.0	0.9
acetic acid	1.1	0.5
Glycidol	0.6	2.9
propionic acid	1.2	0.2
1,2-propanediol	2.4	2.6
unknown(s)	9.4	8.4
ethylene glycol	10.2	9.2
1,3-propanediol	0.7	0.8
phenol	0.2	0.3
СО	2.1	2.7
CO2	1.5	1.9
Glycerol conversion %	71	75
Carbon balance %	92	98
MeOH S.T.Y. g h ⁻¹ kg h ⁻¹	80.5	90.0
coke % Carbon	2.0	3.8
carbon deposition mg g ⁻¹	56	105

Table S10. Hydroxyacetone reactions over MgO_450 and MgO_650 Product selectivity - Reaction conditions: 320 - 360 °C, 50 wt.% hydroxyacetone/water flow 0.016 mL min⁻¹, 0.5 g catalyst, 50 mL min⁻¹ Ar, 3 hours.

Carbon mole selectivity / %	Blank	MgO	MgO	MgO	MgO
		450	450	650	650
Reaction Temperature / °C	320	320	360	320	360
acetaldehyde	0.0	12.2	20.3	21.3	26.5
propionaldehyde	0.0	0.0	0.3	0.0	0.0
acetone	0.0	1.2	1.4	1.8	0.4
acrolein	0.0	0.0	0.0	0.0	1.6
butyraldehyde	0.0	0.0	0.0	0.0	0.0
methanol	0.0	1.3	1.3	1.4	1.2
2-propanol	0.0	0.0	0.0	0.0	0.0
ethanol	0.0	0.2	0.2	0.0	0.0
2,3-butanedione	0.0	2.7	2.3	2.4	1.4
2-butanol	0.0	0.0	0.0	0.0	0.0
1-propanol	0.0	0.3	0.2	0.0	0.0
3-hexanone	0.0	1.2	1.8	1.6	1.9
2-hexanone	0.0	0.0	0.0	0.0	0.0
2-methyl-1-propanol	0.0	0.0	0.0	0.0	0.0
allyl alcohol	0.0	0.4	0.0	0.0	0.0
cyclopentanone	5.9	3.9	3.3	3.1	2.6
3-ethoxy-1-propanol	0.0	2.0	1.4	0.9	0.7
acetic acid	10.5	6.2	8.0	9.5	9.2
Glycidol	5.6	4.4	5.2	2.4	8.0
propionic acid	0.0	4.4	4.0	4.2	4.7
1,2-propanediol	0.0	4.5	8.8	11.8	14.5
unknown(s)	78.0	44.9	34.7	24.8	14.4
ethylene glycol	0.0	0.7	0.5	0.0	0.6
1,3-propanediol	0.0	2.4	2.4	3.4	2.9
phenol	0.0	0.0	0.0	0.0	0.0
CO	0.0	1.0	0.5	2.4	3.3
CO2	0.0	6.3	3.3	7.2	8.3
Hydroxyacetone conversion %	1	16	16	0	1
Carbon balance %	101	89	94	105	104

References

- 1. J. I. Di Cosimo, V. K. Díez, C. Ferretti and C. R. Apesteguía, in *Catalysis: Volume 26*, eds. J. Spivey, K. M. Dooley and Y.-F. Han, The Royal Society of Chemistry, 2014, vol. 26, p. 0.
- 2. D. Cornu, H. Guesmi, J.-M. Krafft and H. Lauron-Pernot, *The Journal of Physical Chemistry C*, 2012, **116**, 6645-6654.
- 3. H.-K. Kwon and D.-G. Park, Bulletin of the Korean Chemical Society, 2009, **30**, 2567-2573.
- 4. J. V. Stark, D. G. Park, I. Lagadic and K. J. Klabunde, *Chemistry of Materials*, 1996, **8**, 1904-1912.
- 5. A. O. Menezes, P. S. Silva, E. Padrón Hernández, L. E. P. Borges and M. A. Fraga, *Langmuir*, 2010, **26**, 3382-3387.
- 6. J. Yang, Y. Li, X. Zhao and W. Fan, *Langmuir*, 2018, **34**, 3742-3754.
- 7. A. Lind, K. Thorshaug, K. A. Andreassen, R. Blom and B. Arstad, *Industrial & Engineering Chemistry Research*, 2018, **57**, 2829-2837.
- 8. Y. Yanagisawa, K. Takaoka, S. Yamabe and T. Ito, *The Journal of Physical Chemistry*, 1995, **99**, 3704-3710.