Supplementary Material

Novel chromotropic dyes with surface activity and a regulable color transition point derived from phenolsulfonphthalein

Jie Shan,^{a, b, c} Haitao Sun,^{b, c, e} Jiquan Liu,^{c, d} Zhiwei Yan,^{b, c} Kun Zhu,^f Xiangdong Yu,^b Yinke Dou^e

 ^a Taiyuan University of Technology, Editorial Office of Shanxi Coal, Taiyuan;030024, China; ^b National Engineering Laboratory for Coal Mining Machinery, Taiyuan; 030012, China; ^c China Coal Technology and Engineering Group Taiyuan Research Institute Co. Ltd., Taiyuan; 030012, China; ^d College of Mechatronics Engineering, North University of China, Taiyuan; 030051, China; ^e College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan; 030024, China; ^f China Coal Technology and Engineering Group, Beijing; 100013, China *Email: shanjie@tyut.edu.cn*

Table of Contents

Figure s-1. The IR spectra of 3a and 3b (3a in black color and 3b in red color).

Figure s-2. The ¹H NMR and ¹³CNMR spectra of 3a.

Figure s-3. The ¹H NMR and ¹³CNMR spectra of **3b**.

Figure s-4. The IR spectra of 3c.

Figure s-5. The ¹H NMR and ¹³CNMR spectra of 3c.