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Abstract 

It is clear that the COVID-19 pandemic has brought renewed attention to the urgent need for the development 
of efficient strategies for drug discovery and development. In particular, there is an increasing demand for more 
powerful and reliable computational methods that contribute to satisfy needs in the health sector owing to the 
urgent need for effective pharmacological therapies. Here, we review Artificial Intelligence (AI) approaches for 
predicting biological activity and chemical properties of designed molecules, as well as for the planning and 

execution of experiments testing their pharmacological behavior. This review begins with a brief introduction 
to Machine Learning (ML) methods. Next, the virtual screening protocols that are commonly used in the domain 
of protein-ligand interactions, ligand binding affinity, and binding pose (conformation) are reviewed, including 
classical ML algorithms and deep learning methods. We also discuss the ML approach implemented to predict 
and design synthetic pathways to reach a molecule. Finally, the application in self-driving labs (SDLs) for the 
execution of experiments in organic synthesis is presented. It is hoped that this review will promote the 
exploration of more accurate ML-based prediction strategies to examine molecules with potential biological 
activity. 
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1. Introduction 
 

The recent COVID-19 pandemic has challenged the healthcare sector and has induced the pharmaceutical 

industry to undertake unprecedented scientific efforts to obtain an effective vaccine in the shortest possible 

time. Currently, the pharmaceutical industry is at an inflection point driven by the demand for faster, better, 

and cheaper drug development techniques to meet demand. In this regard, Artificial intelligence (AI) is being 

leveraged to accelerate drug discovery, which will eventually reduce the cost of treatments.1-3 AI techniques 

such as machine learning (ML) and deep learning (DP) accelerate and improve the drug development process 

by enabling more efficient and accurate analysis of substantial amounts of data, such as building models to 

estimate and/or classify the bioactivity of new ligands, prediction of target structures, the optimization or 

discovery of ‘hits’ and ‘hit’ candidates (‘hit’ is a compound that exhibits the desired activity, which is confirmed 

upon reiterative testing4), as well as the elaboration of models that help predict pharmacokinetic and 

toxicological aspects (ADMET) of interest.1-5 

The AI drug development process, driven by the availability of massive amounts of data and algorithms that 

can process them, enabled by enormous advances in computational processing, as well as a growing internet 

infrastructure, gave rise to an area called Big Data. In particular, big data contains information related to the 

pharmaceutical chemistry, which has the necessary components for the exploration of therapeutic targets (a 

pharmacological target or molecular target is defined as the place in the organism where a drug employs its 

action) and molecules with possible pharmacological activity.6 In addition, information is available on molecular 

structure, clinical trial reports, patents, drugs on the market, as well as molecular building blocks or molecules 

that have been characterized by having some biological effect or activity.7-9 
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AI-assisted drug development begins with data preparation, in a procedure that goes from data 

accumulation, pre-processing, and transformation with the aim of translating chemical-pharmaceutical data 

into machine-readable representations. Of the protocols with ML in pharmaceutical development, one of the 

most common is "smart" virtual screening, which consists of the application of ML algorithms in the exploration 

of different databases of compounds or molecular fragments, in order to identify and select a number of 

compounds that present the desired biological activity on a specific therapeutic target. Another is computer-

aided drug design that seeks to predict the best route for the synthesis of compounds of interest, based on 

criteria that evaluate the viability of the synthetic route and the investment costs for such synthesis. On the 

other hand, in self-driving labs (SDLs), algorithms are applied for decision-making in the sequencing and 

optimization of reaction conditions, as well as specialized software and robots to carry out the process, See 

Figure 1. 

 

 

 

Figure 1. Data Preparation and AI-Assisted Drug Development Process. 

 

 

2. Data Preparation  
 

Before starting the construction of an ML protocol, it is necessary to collect data from the various sources of 

information and order it by its relevance. Ideally, such a dataset should contain structurally diverse molecules 

and should cover a wide range of values of the target property.10-11 These data should contain information 

related to physicochemical properties (molecular weight, melting point), reaction conditions (temperature, 

pressure, and time), and fingerprints or segments that describe the structural information of the molecules.12 

Since the collected data may be in an unwanted, disorganized, or extremely large format, pre-processing is 

necessary to improve its quality. The three common steps for data preprocessing are formatting, cleaning, and 

sampling.13 Format ensures that all variables within the same attribute are written consistently, while data 

cleaning involves removing messy data and incorporating missing values, whereas sampling is applied when too 

much data may result in impractical analysis. A further step is the transformation of the data, as most datasets 

contain features that vary in terms of range, units, or magnitude. Data needs to be transformed with scaling 
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and standardization in mind. Also, if some values in the dataset are too complex, decomposition into multiple 

constituent parts may be more meaningful to an ML model (an example is time constituted by date and time; 

in some cases, it is better to separate them and keep only the relevant data). The opposite situation may be 

observed when aggregation of related data (an example is toxicity and half-life, being related pharmacokinetic 

parameters) is useful for ML algorithms. 

 

2.1. Learning algorithms 

Depending on the data available and the task to perform, we can choose among several types of learning 

algorithms. The most common are ‘supervised learning’, ‘unsupervised learning’, ‘semi-supervised learning’ and 

‘reinforcement learning’. 

In supervised learning, a function is deduced from a set of training data that is categorized or labeled using 

regression and classification. A regression task consists of predicting an objective numerical value, such as the 

conductivity, product yield, and adsorption capacity of the molecules when given a set of inputs, whereas a 

classification task pertains the selection of models based on input parameters and their corresponding output. 

This way, the algorithm learns to select the most feasible outcomes based on the correlation between the input 

data and the learned data. Frequently used supervised models include Artificial Neural Networks (ANNs), 

Random Forest (also known as random decision forest, RF), Support Vector Machines (SVMs), etc.14 This 

methodology can be applied, for example, in Quantitative Relationship Structure Activity or Quantitative 

Relationship Structure Property (QSAR/QSRP) models. 

Unsupervised learning employs unclassified or unlabeled datasets and allows the model to learn without 

any guidance. It consists of two common methods; that is, data grouping or dimensionality reduction. Data 

grouping involves initial calculation of the similarities of all samples according to specific metrics followed by 

assignment to specific groups based on their similarities, patterns, and dissimilarities. On the other hand, 

dimensionality reduction involves mapping a high-dimensional data matrix to a low-dimensional one while 

maintaining the information provided in the original data.12 Basically, models must discover the hidden pattern 

within the unlabeled data, and then generate clusters of them. Artificial Neural Networks (ANNs)15 derivations 

are included in this model, and can be used, for example, to find hidden patterns in medical and/or biological 

data, and to identify new drug targets relevant to the cure of diseases.16,17 

Semi-supervised learning falls in between supervised learning and unsupervised learning. These methods 

have been effective when addressing the handling of incomplete databases, with the use of previously 

established criteria.18,19 

Reinforcement learning examines the environment repetitively before taking action. This methodology aims 

to use experiences, which would either minimize risks or maximize benefits. The most commonly used 

algorithms are deep adversarial networks,20 Time Difference21 and Q-Learning.22 

The learning models mentioned above must be evaluated to determine their performance. In practice, several 

model validation strategies can be used to prevent overfitting (overfitting is an unwanted ML behavior that 

occurs when the model provides accurate predictions for training data, but not for new data). In an ideal 

situation, the available data would be divided into 3 parts: training, validation, and test datasets.23 There are 

many methods available for validating machine learning models, such as historical data validation, sensitivity 

analysis, predictive validation, comparison with other models, residual time evolution, Wilcoxon signed rank 

test, McNemar test, etc.24,25 

Currently, the ML algorithms most widely used in the field of drug design are: Random Forest (RF) and 

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) among their derivations for increased 
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accuracy and satisfactory performance on substantial amounts of data.26 Other available algorithms are k-

nearest neighbors (KNN),27 naïve Bayes (NB),28 and logistic regression (LR),29 (Figure 2). 

 

 
 

Figure 2. ML learning algorithms that are commonly used in the field of drug design: Random Forest (RF) and 

Artificial Neural Networks (ANNs). 

 

RF is a supervised machine learning method built from a set (assembly) of decision tree (DT) algorithms, and 

they are organized based on a given priority of attributes or characteristics. They are used to solve regression 

and classification problems. They consist of two basic components: decision nodes and leaf nodes: Decision 

nodes represent the attributes or conjunctions of features that are used to analyze the data; and the leaf nodes 

represent the labels of each class. 

On the other hand, ANNs are inspired by the biological neural networks of the human brain; that is, they are 

a cognitive computational system that is based on an algorithm represented by a matrix of interconnected 

nodes, so-called "neurons".15 Each neuron incorporates several inputs and gives rise to a single output by means 

of a nonlinear function, affording the product of the inputs and parameters called "weights".30,31 Since neurons 

are arranged in layers, the output of one layer becomes the input of the next. The weights of each neuron are 

adjusted during the training process in order to minimize a function that calculates a differential score between 

the overall output and the ideal output (Figure 2).32,33 An example is the analysis of data points with specific 

characteristics, such as solubility, lipophilicity or bioavailability, to distinguish between high or low 

bioavailability, a relevant parameter in pharmacokinetics.  

SVMs are a supervised methodology that facilitates the prediction of property values based on data 

classification and regression.34 The goal of the SVM algorithm is to find a hyperplane that most properly 

separates different classes of data points. The classification task is accomplished by finding the differentiation 

criterion hyperplane between sets of points that belong to two distinct categories. First, the data are assigned 

to a new high-dimensional space in order to simplify the classification task. The decision limit is calculated using 

a protocol called "margin maximization", in which the distance between the hyperplane and the adjacent data 

points of each class is maximized. In the case of regression, the hyperplane is defined by optimizing the sum of 

the distances from the data points to the decision limit34,35(Figure 3). SVMs are often used for binary properties 
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or activity potentials; for example, to discriminate between active and inefficient drugs, solubility in aqueous 

media, of synthetic feasibility, or to differentiate the specific activity of the compound.36,37 

 

 
 

Figure 3. SVM classification examples. (a) Linearly separable datasets. The solid line indicates the hyperplane 

identified with the SVM technique that maximizes the distance to the nearest points of each class. Dashed lines 

delimit the margin for each class. b) Example: In the representation on top the datasets are not linearly 

separable, and in the representation at the bottom, the same datasets are shown, but they are mapped into a 

three-dimensional space. The data is now linearly separable by a hyperplane.38 

 

The application of ML algorithms to a chemical target is a process that requires (1) the proper definition of 

the problem and the setting of specific objectives before making any structural decision. (2) The preparation of 

encoded input/output data, from a chemical descriptor or fingerprint; that is, the translation of chemical models 

into machine-readable representations.14 (3) The selection of the ML architecture to which the study belongs 

(see below) as well as the selection of the algorithms necessary for its execution (RF, ANN, SVMs, etc.). Once 

the initial structure and associated datasets have been established, one can proceed with training, evaluation 

of the model, and finally the interpretation of the results. 

Most ML techniques used in drug discovery are based on the construction of an output function from a data 

distribution or a probability density function p(z) generated from the structural information of the samples and 

the order of structural similarity (Figure 4).14,39 The participation of these tasks is mainly presented in the virtual 

screening and are classified depending on the domain and can be generative or discriminative. A Generative 

Domain seeks to determine a joint probability function G(x,y), i.e., the probability of observing both the 

molecular representation x' (a representation analogous to that of the input data x) and its property (y) (e.g., 

solvation energy, enzyme affinity, etc.). A Discriminator Domain DD, on the other hand, aims to determine a 

conditional probability function D(y/x); that is, the probability of observing the property (y), given a molecular 

representation (x).17,40 
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Figure 4. The Generative Study Domain determines a joint probability distribution G(x, y). Discriminative, it 

determines conditional probabilities D(y|x) and is based similarity Search (the assumption that structurally 

similar molecules exhibit similar biological activity compared to different or less similar molecules).41 

 

 

3. "Smart" Virtual Screening 
 

Virtual screening (VS) refers to a set of computational methods that helps to address specific problems by 

identifying potential successes through in silico experimentation. Today, this AI-supported technique offers 

considerable value in focusing the search, increasing hit rates through intelligent compound selection, and 

reducing time and costs to reach a satisfactory lead. It helps to select molecules within the virtual chemical 

space through mapping that allows the distribution of molecules and their properties to be visualized. The idea 

is to collect structural information from molecules within the explored space to search for bioactive compounds. 

Typically, this approach can be based on ligands (LBVS), on structural information (SBVS), and currently a third 

discipline is included, chemogenomics, an area that tries to unite both study spaces between ligands and drug 

targets (Figure 5). 

LBVS seeks to estimate binding forces based on available ligand information (e.g., residue orientation, 

residue charges, etc.), anticipating that similar molecular structures can bind to a target protein and give rise to 

some activity. Within LBVS there are methodologies such as Similarity Search,42 pharmacophore mapping,43 or 

QSAR/QSRP.44 SBVS collects information from a given three-dimensional molecular structure, as it assumes that 

the bonding of two molecules depends on the orientation of their atoms. SBVS models require a target structure 

and precise knowledge of the active sites that bind the ligands together. Numerous ML approaches can be used 

for the identification of binding sites, such as molecular dynamics (MD),45 molecular coupling (MC)46 and 

homology modeling (HM). 47-51 Chemogenomics works from an interdisciplinary approach that combines 

traditional ligand-based approaches with biological information on drug targets. The goal of chemogenomics is 

to understand the molecular recognition event between different ligands and potential drug targets. The 

binding protein and ligand shape have been previously studied as separate entities, whereas chemigenomics 

deals with datasets representing the relevant regions of the protein-ligand shared space.52 
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Figura 5. Intelligent Virtual Screening works by probing databases to obtain promising molecules "Molecular 

Hit". 

 

3.1. Study space  

3.1.1. Description of ligand spaces and drug targets. The ligand and protein space have been previously studied 

as separate entities, but chemogenomics studies deal with large datasets covering parts of the protein-ligand 

joint space. Since chemogenomics is concerned with the macromolecules with which ligands interact, it is of 

interest to develop ML strategies to visualize protein-ligand subspaces.52 Basic assumptions of chemogenomics-

based strategies are: (i) substrates that present some chemical similarity are likely to share the same targets 

and (ii) targets that accept similar ligands are likely to present similar structural patterns at the corresponding 

binding sites.42 Therefore, completing the theoretical chemogenomics matrix implies that data on the 

"unbound" targets should be collected from the nearest neighboring "linked" targets, and that data on the 

"untargeted" ligands should be obtained from the nearest "targeted" ligands.  

3.1.2. Ligand space. To navigate efficiently in ligand space it is necessary to encode a molecule into a descriptor 

(numerical values that characterize molecular properties),53 and then use a metric that describes the similarity 

between different descriptors, which allows the classification of compounds in a virtual library according to their 

similarity to experimentally verified assets (an example is the Tanimoto coefficient,54 which is known to be one 

of the best performers). Descriptors are typically classified according to their dimensionality, ranging from one-

dimensional (1-D) to four-dimensional (4-D) properties.55,56 
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1-D descriptors are readily calculated, describe fundamental properties, such as molecular weight, number 

of atoms, and bonds, which can be derived from chemical formulas, and which can be used to predict 

pharmacokinetic properties, such as aqueous solubility,57 the partition coefficient of 1-octanol-water,58 plasma 

protein binding or bioavailability,59 and also to classify compounds as drugs vs. non-drugs60-62 or to design 

multiple ligands.63 

Descriptors for relevant ligands are included in the 2-D family of topological descriptors, where connectivity 

(list of atoms and bonds) is presented and analyzed to encode salient atomic and bonding characteristics. Among 

these are methods based on 2D fingerprints (binary chain with a list of substructures or other predefined 

patterns).64 Its essence lies in the search for specific properties in a molecule (molecular properties such as: 

donor potential hydrogen bonding, potential hydrogen bond acceptor, volume, and electropositivity65). The 

presence or absence of these properties is encoded in the form of an atomic key which is a four-bit string 

(sequence of digits "0" and "1").66  

3-D fingerprint methods are more appropriate for similarity searches as they encode specific properties of 

the structural conformation (atomic coordinates, 3D pharmacophores, shapes, potentials, fields, spectra; etc.). 

Likewise, the description of molecular structure by 4-D models is considered for a set of conformers 

(conditionally, the fourth dimension), rather than a fixed conformation, as well as for describing its size and 

chemical structure.67 Other methods used in chemoinformatics are SMILES (Simplified Molecular Line Input 

Specification),68 WLN (Wiswesser Line Notation) or SDF (Structure Data Format) file,60 which are representations 

of 2-D or 3-D chemical structures.  

3.1.3. Target space. Proteins are commonly classified according to their sequence and structure. Numerous 

chemogenomics approaches apply the classification of target families (such as ion channels, kinases, G-protein-

coupled receptors "GPCRs") or protein subfamilies (such as purinergic GPCRs) without taking into account the 

similarities of putative ligand binding sites.70 To understand the structural architecture of the target, it is usually 

helpful to analyze the 2-D structure (presence of α-helices, δ-sheets, coils and random structures71) and it is 

actually better to analyze the 3-D structure (atomic coordinates provided by X-ray diffraction, NMR or molecular 

modeling72) and/or the corresponding conformation.  

Targets can also be classified according to their pharmacological behavior, in particular binding affinity for a 

set of ligands.73  

3.1.4.Target-ligand space. For ML exploration of target-ligand interactions, an efficient method is the use of 

ANNs, due to its ability to recognize precise patterns between independent variables and dependent variables. 

ANNs are usually trained on hundreds of thousands of existing chemical structures to provide three 

interconnected functions: an encoder, a decoder, and a predictor. The process occurs in two stages: namely, a 

generative stage and a predictive stage. In a typical study, the generative stage takes place when the encoder 

maps the digital representation of the molecule (fingerprint or chemical descriptor) as a continuous vector of 

real values, known as a latent space or probability density function. On the other hand, the predictive stage is 

designed to estimate the properties of molecules from the continuous vector representation of the molecule 

based on the assumption that compounds with similar structural patterns must have similar "drug-likeness" 

properties.74 With the associated data, it is possible to navigate directly into the protein-ligand space, through 

complete arrays in which structural or affinity information is stored. Typically in an xy coordinate system, 

experimental evaluation of y-axis targets are variables that depend on compounds on the x-axis (e.g., in an in 

vitro affinity assay) affords an xy number array (IC50 values), which are most useful to predict the affinity of a 

new compound with an existing target using linear regression,75 or, to measure a QSAR distance between two 

compounds or to estimate ADME properties and side effects.76 Of particular interest are the Structural 

Interaction Fingerprints (IFPs),77,78 that convert the atomic coordinates of a protein-ligand complex into a string 
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of bits that presents, for each residue of a binding site, the type of molecular interactions (e.g., hydrogen-bond, 

aromatic interaction, hydrophobic interaction) originated by a cocrystallized or coupled ligand.73 

Representative models within the target-ligand space are the QSAR-based computational model,79 which is 

based on mathematical models that make it possible to establish a relationship between the molecular structure 

and its chemical properties through various descriptors. That is, it seeks to find the correlation between 

molecular descriptors, fingerprints, graphs or other mathematical representations of molecules with real 

properties such as biological activity, ADMET, binding free energies, and kinetic data for the formation of 

protein-ligand complexes.80,81 In this context, the chemical-biological properties are fundamentally determined 

by the molecular structure, which emphasizes the importance of studying their molecular properties. To 

correlate some relevant properties of molecules, such as melting point, boiling point, solubility, λ max, etc. 

where QSPR models are usually employed.82,83 The quantitative structure-toxicity relationship (QSTR) model is 

relevant for the rejection of toxic molecules based on their parameters (TD50 and LD50 toxic and lethal dose 

parameters) in the early phases of drug development, thus increasing the quality of the selected candidates.84 

An illustrative example is the work carried out by Sepp Hochreiter et al., which consisted of the prediction of 

toxicity using the DeepTox protocol adjusted to ANNs, based on patterns of substructures previously reported 

as toxicophores (A toxicophore is a molecular moiety that is related to the toxic properties of a chemical 

substance).85 The molecular biodegradability is also frequently associated with its molecular structure, and 

therefore, QSBR models are valuable for studying the biodegradability of a molecule in the context of 

environmental protection (Figure 6).86 

 

 
 

Figure 6. Artificial Neural Networks consist of a generative and a predictive stage, which aim to predict molecular 

properties by analysis by QSRP/QSAR/QSRT/QSBR by structural pattern recognition. 

 

3.2. Molecular chirality in virtual screening 

For VS by ML, it is important to consider the three-dimensional environment of the molecules. Chirality is the 

stereochemical property that describes the spatial arrangement of chemical substituents around a tetrahedral 

atom. Thus, a carbon atom is a center of chirality when it presents four non-similar substituents oriented to the 

vertices of the tetrahedron resulting from its sp3 hybridization. Enantiomers (two molecules with the same 

chemical composition and connectivity, but different arrangement of the atoms around them) are non-

superimposable mirror images.87 These structures exhibit similar chemical properties (e.g., boiling/melting 

points), electron energies, and solubility, but they behave differently when interacting with external chiral 

environments.88 Therefore, chirality is crucial for drug design, as protein-ligand interactions are highly 

influenced by ligand chirality, because proteins are also chiral.89 
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Most neural networks are designed to specify the chirality of potential drugs.88 For example, Tyler Derr et 

al. developed a model called the Molecular-Kernel Graph Neural Network (MolKGNN), for ML training of three-

dimensional molecular representation, and it is based on the design of a convolution of molecular graphs that 

captures patterns in structural representations (Figure 7). In particular, the structural nuclei (atoms) and their 

neighbors in the recipient molecule are compared with atoms learned by the algorithm (supervised learning). 

On the one hand, the data must be labeled with three-dimensional similarity attributes (bond distances, bond 

order, R or S stereocenters) and are evaluated with specific criteria, assigning them a score that depends on the 

degree of similarity.90 As it becomes a multilayer system as the algorithm is trained, the pattern recognition 

power will be more efficient to the point that the three-dimensional characteristics of the molecule can be 

detected with certainty. 

 

 
 

Figure 7. Artificial Neural Networks based on graph convolution. Molecular graph convolution takes patterns 

from 3D or 4D descriptors as input data labeled with similarity attributes (bond distances, bond order, R or S 

stereocenters) and as the algorithm learns the 3D patterns which enhance structural recognition. 

 

 

4. Drug Design 
 

After decades of intense research in academia, organic synthesis is recognized as an art that requires creativity 

and rigorous training.91 AI drug development methods are very attractive because of the benefits they bring, 

such as saving resources, increasing chemical yields, as well as their potential to suggest more effective synthetic 

compounds.92  

 

4.1. Computer-aided synthesis planning 

New synthetic computer-aided synthesis planning (CASP) techniques are changing the way people work in this 

field and aim to minimize manipulations and maximize convergence for maximum reliability and efficiency in 

the experimental realization of estimated synthetic pathways.93-96 

A typical CASP system consists of four modules: (a) The Reaction Template Database, which stores known 

reactions (is developed by manual entry and automatic extraction from commercial and open access databases), 

so that it is more feasible to design an optimal retrosynthesis path. (b) The retrosynthesis module, which is a 
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program that compares the structure of an input molecule with known reactions within the template database 

and returns the best match. (c) The ML-based guidance module (e.g., RF or ANNs to predict synthetic pathways 

through discrimination and correlation) which is used to evaluate potential precursors as well as the feasibility 

of various synthetic pathways. Finally, (d) access to the database of commercially available compounds (Figure 

8).93,94,96 

 

 
 

Figure 8. Main components of Computer-Aided Synthesis Planning (CASP). 

 

Rule-based methods are conceptually similar to the procedures by which an organic chemist selects a known 

synthetic procedure to apply in the preparation of a specific synthetic target. These are generated from reaction 

templates contained in the database95 and are evaluated with scoring functions: (a) the Chemical Scoring 

Function, to evaluate the difficulty of obtaining the desired molecules and (b) the reaction scoring function, 

which evaluates the cost of carrying out the proposed reactions. At this stage, synthetic routes that use fewer 

steps are favored and any conflict of reactivity or selectivity is penalized.97,98 Structure-based and reaction-based 

scoring systems are currently being used here. Structure-based approaches assess the viability of molecular 

structure, examples include SYBA99 that is based on a naïve Bayes classifier that is responsible for scoring 

individual fragments; RetroGNNS100 ANN-based predicting molecules with biological activity and synthetic 

accessibility. On the other hand, reaction-based approaches predict synthetic accessibility by capturing the 

similarity of synthetic pathways stored in chemical reaction databases, e.g., dataset design,101 SCScore102 ANN-

based.  

An interesting case is the project developed by Grzybowski and his collaborators,103 the software called 

SYNTHIA, which brings together modern high-power computing, artificial intelligence, and expert chemists’ 

knowledge to design synthetic pathways that lead to specific targets, either previously synthesized or prepared 

for the first time. This program contains about 70,000 manually selected reaction transformation rules, which 

took the researchers more than 15 years to collect. However, it has been argued that SYNTHIA is impractical to 

manually code all synthetic pathways considering the exponential growth in the number of published 

reactions.104 In addition, a simple template is usually not sufficient to reliably predict potentially useful reactions 
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because it only identifies reaction centers and their neighboring atoms without considering the overall 

information of the target molecule. An alternative method that tries to solve this problem is the so-called 

Molecular Transformer (autoregressive encoder-decoder model)105,106 that provides higher accuracy and 

involves a lower computational cost. On the other hand, Zheng and collaborators107 developed SCCROP, which 

suggests processes by retrosynthesis with an ANN-based syntax autocorrect, achieving 59% accuracy in a 

standard reference dataset outperforming rule-based methods. On the other hand, state-of-the-art methods 

such as LocalRetro divide generic reaction templates according to atomic change, bond polarity, and trains three 

different classifiers to obtain promising results for chemical synthesis.108 

 

4.2. Molecular chirality in drug design 

To examine regioselectivity and stereoselectivity, retrosynthesis predictors have been developed using SMILES 

and Molecular Transformer. However, SMILES may lead to erroneous predictions due to its fragile grammar. For 

example, a single character misplacement can be sufficient to invalidate an entire SMILES string, so any error 

within the molecular representation can lead to failure. To avoid these problems, alternative descriptors such 

as SELFIES109 and DeepSMILES110 have been used. A breakthrough within the molecular transformer that avoids 

inherent problems with the molecular descriptor was developed by Juyong Lee's group,111 which replaces 

SMILES with atomic environments (AE),112 making predictions with 58.3% accuracy.  

The more appropriate incorporation of stereochemistry into molecular representations is a future direction 

being explored, as to date there are no reports of rule-based methods for the prediction of stereoselective 

reactions.113 Graph-based methods systematically avoid stereochemistry issues, which highlights a great 

challenge.114 In this context, the work carried out by Reymond's group,115 based on Molecular Transformers, has 

the ability to interpret and predict reactions with stereochemical information of carbohydrates, where regio 

and stereoselectivity played an important role. Overall, they observed a consistent prediction accuracy above 

70%, and validation was addressed by means of the experimental synthesis. 

Despite CASP advances, the accuracy of predictions remains limited due to the overfitting of models to 

specific properties of training datasets, which can be mostly unbalanced or biased.116 In the future, it is intended 

that CASP will be able to solve more challenging problems, such as chemo, regio, and stereoselective reactions. 

In this sense, CASP algorithms continue to evolve, particularly in the processing of template data that are based 

on reaction mechanisms and transition states.96 

 

 

5. Applications of ML in the Laboratory 
 

Many chemists and chemical engineers dream of the availability of a machine that has the ability to synthesize 

the molecules of interest, with no human participation.117 Although recent advances in laboratory automation 

have reduced the time and effort required to perform manual chemical operations, the development of 

synthetic routes for the preparation of new molecules is still a manual process, requiring a large investment of 

time. However, it is hoped that the latest technological innovations in automation, robotics, and computing, as 

well as current advances in chemistry, synthesis and characterization of materials will be a catalyst to enable 

the autonomous development of chemical synthesis, both in industry and in academia.118  

Since chemical laboratory research has always accumulated a large amount of experimental data on chemical 

and physical properties, reactions, chemical structures, and biological activities, autonomous labs promise to 

dramatically speed up the discovery process by improving automated experimentation platforms and 

decreasing measurement errors. However, in order to achieve this goal, the "levels of autonomy" must be taken 
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into account.119 which are parameters that describe the degree of independence of human intervention in the 

autonomous laboratory. In addition, the application of standardized procedures with robotic support is 

intended to improve the reproducibility of experiments, reduce costs, synthesis times and analysis tests.120,121 

 

5.1. Self-driving labs 

It has been shown that self-driving labs (SDLs) can be based on simple natural language processing (NLP).122 An 

SDL is a modular experimental platform assisted by machine learning that iteratively operates a series of 

experiments selected by the ML algorithm to achieve a user-defined goal.123 SDL are built from a 

multidisciplinary establishment that combines AI with automated robotic platforms for the autonomous 

preparation of new molecules or materials. On the one hand, ML and modeling methods are used to predict the 

properties of materials being synthesized and suggest new experiments to improve the synthetic procedure. 

Robotics, computer vision, and automated characterization methods are used to perform the experiments and 

analyze the results. There are several salient examples of SDL. Christensen's group124 developed an automated 

closed-loop system to carry out parallel experiments optimizing a Suzuki-Miyaura stereoselective coupling 

reaction, while other research groups developed continuous-flow chemical synthesis systems in C-C and C-N 

cross-coupling reactions, olefination, reductive amination, nucleophilic aromatic substitution (SNAr), and 

photoredox catalysis,125 or in lithium-halogen exchange reactions.126 On the other hand, Granda's127 group 

developed a reaction system controlled by an ML algorithm with the ability to explore the space of chemical 

reactions, an organic synthesis robot that can perform chemical reactions, and automated analysis (using 

nuclear magnetic resonance and infrared spectroscopy) as well as prediction of the reactivity of possible 

combinations of reactants. For last-generation laboratories habilitated to carry out high-pressure and high-

temperature, Fast-Cat autonomously carries out Pareto-front mapping of homogeneous catalysts in gas-liquid 

reactions,128 and Smart Dope, Autonomous Fluid Laboratory, for rapid synthesis and autonomous optimization 

of doping involving metal cations.129 ChemOS, which is a flexible and modular system that manages the essential 

instructions for operating autonomous laboratories, from managing data collection, to the design of 

experimental procedures, and for providing instructions to robotic equipment. It also allows for the remote 

control of equipment, so that ChemOS can operate in different labs, including those located in different 

institutions.130 

Other forms of virtual interaction have been reported in the form of a graphical user interface (GUI), which 

allows users to perform optimizations, monitor progress, and analyze results. Subsequent users of an optimized 

procedure only need to download an electronic file, comparable to a smartphone application, to implement the 

protocol on their own device.131 

In this context, Coley et al.132 in 2019 designed a synthesis planning module, based on ASKCOS, which is 

software that uses millions of reactions pulled from the United States Patent Office (USPTO), Reaxys, and other 

databases. It consists of a binary classifier and is intended to answer the question: Is there any set of conditions 

under which these reactants will give rise to the product of interest? Reactions that pass this filter with a user-

adjustable threshold are added to an RF model. The optimal reaction conditions are provided by an ANN model 

trained to propose a prioritized list of most suitable reactants, solvents, catalysts, and temperature for such a 

transformation. The process consists of submodules implemented in a robotic flow chemistry platform (Figure 

9).133 
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Figure 9. Synthesis planning module based on self-driving labs (SDLs); a robotic flow chemistry platform 

implemented in the synthesis of organic molecules. 

 

 

Conclusions 
 

Artificial intelligence and machine learning are becoming revolutionary technologies for the discovery and 

development of new drugs. This is due in part to efficient access to massive amounts of data, as well as advances 

in computer science, chemistry, medicine, engineering, and other fields. Scientific research, which is reflected 

in the increase in the number of articles published on this topic, and interest in industry will surely be reflected 

soon in the solution to crucial problems for humanity. Automation, on the other hand, will allow researchers to 

efficiently tackle a wider range of challenging problems, focusing on conceptualizing the results of the many 

experiments conducted and classified by intelligent computers, i.e., in other words, researchers cease to be 

responsible for the final design of the synthesis of interest. 
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