Supplementary Material

Sodium dodecyl sulfate catalyzed one-pot three-component synthesis of structurally diverse 2-amino-3-cyano-4-substitued-4*H*-chromenes in aqueous medium at room temperature

Bubun Banerjee,^{a,b*} Anu Priya,^a Aditi Sharma,^a Arvind Singh,^a and Manmeet Kaur^a

^aDepartment of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India ^bVisiting Researcher, Eternal University, Baru Sahib, Himachal Pradesh 173101, India Email: <u>banerjeebubun@qmail.com</u>

Table of Contents

Characterization data with scanned spectra of all the synthesized compoundsS2

Characterization data with scanned spectra of all the synthesized compounds:

4a

2-*Amino-4-(1H-indol-3-yl)-4H-chromene-3-carbonitrile* (**4a**). Yellow solid, yield 94%; mp 166–168 °C; 1H NMR (500 MHz, DMSO-*d*6): $\delta_{\rm H}$ /ppm 10.84 (s, 1H, -NH), 7.29 (d, J 8.5 Hz, 1H, aromatic H), 7.23 (d, J 1 Hz, 1H, aromatic H), 7.20 (d, J 7.5 Hz, 1H, aromatic H), 7.15 (t, J 11 Hz, 1H, aromatic H), 7.04 (d, J 7.5 Hz, 1H, aromatic H), 6.99 (t, J 12 Hz, 2H, aromatic H), 6.95 (t, J 11.25 Hz, 1H, aromatic H), 6.82 (t, J 11.25 Hz, 1H, aromatic H), 6.70 (s, 2H, -NH₂), 4.95 (s, 1H, -CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 160.6, 148.9, 137.5, 129.8, 128.3, 125.8, 124.9 (2C), 124.3, 123.6, 121.5, 121.3, 119.2, 119.0, 116.3, 112.3, 56.9, 32.9; HRMS (ESI-TOF) *m/z*: For C₁₈H₁₃N₃O Calcd. [M+Na]⁺ 310.0956; Found [M+Na]⁺ 310.0869.

Figure S1. ¹H NMR spectrum of 4a

Figure S2. ¹³C NMR spectrum of 4a

Figure S3. HRMS spectrum of 4a

2-*Amino-4*-(5-*methoxy-1H-indol-3-yl)-4H-chromene-3-carbonitrile* (**4b**). Off white solid, yield 98%; mp 185–187 °C; ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ /ppm 7.93 (s, 1H, -NH), 7.22 (d, J 9 Hz, 1H, aromatic H), 7.18 (t, J 11.25 Hz, 1H, aromatic H), 7.11 (t, J 4.25 Hz, 2H, aromatic H) 7.03-6.98 (m, 2H, aromatic H), 6.80 (dd, J 8.75 Hz, 2.5 Hz, 1H, aromatic H), 6.77 (d, J 2 Hz, 1H, aromatic H), 5.02 (s, 1H, -CH), 4.56 (s, 2H, -NH₂), 3.73 (s, 3H, -OCH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ /ppm 170.4, 164.1, 158.3, 153.9, 152.1, 148.8, 132.1, 129.6, 128.1, 125.1, 123.2, 122.9, 116.1, 112.1, 112.0, 101.4, 61.5, 55.8, 32.7; HRMS (ESI-TOF) *m/z*: For C₁₉H₁₅N₃O₂ Calcd. [M+Na]⁺ 340.1062; Found [M+Na]⁺ 340.0804.

Figure S4. ¹H NMR spectrum of 4b

Figure S5. ¹³C NMR spectrum of 4b

Figure S6. HRMS spectrum of 4b

2-*Amino*-6,8-*dibromo*-4-(5-*methoxy*-1*H*-*indo*l-3-*yl*)-4*H*-*chromene*-3-*carbonitrile* (**4c**). Yellow solid, yield 91%; mp 213-215 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ_{H} /ppm 10.82 (d, J 2.5 Hz, 1H, -NH) 7.71 (d, J 2.5 Hz, 1H, aromatic H), 7.27 (d, J 3 Hz, 1H, aromatic H), 7.22 (t, J 6 Hz, 2H, aromatic H), 7.03 (s, 2H, -NH₂), 6.72 (d, J 2 Hz, 1H, aromatic H), 6.70-6.68 (m, 1H, aromatic H), 5.00 (s, 1H, -CH), 3.64 (s, 3H, -OCH₃); ¹³C NMR (125 MHz, DMSO-*d*₆): δ_{C} /ppm 160.2, 153.5, 145.4, 133.6, 132.5, 131.6, 128.4, 124.4, 120.6, 118.3, 116.5, 113.1, 111.3, 110.9, 100.9, 100.3, 56.8, 55.7, 33.3; HRMS (ESI-TOF) *m*/*z*: For C₁₉H₁₃Br₂N₃O₂ Calcd. [M]⁺475.1334; Found [M-H]⁻473.9489.

Figure S7. ¹H NMR spectrum of 4c

Figure S8. ¹³C NMR spectrum of 4c

Figure S9. HRMS spectrum of 4c

4d

2-*Amino-4-(nitromethyl)-4H-chromene-3-carbonitrile* (**4d**). Off white solid, yield 95%; mp 139–141°C; ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ /ppm 7.32-7.29 (m, 1H, aromatic H), 7.18-7.13 (m, 2H, aromatic H), 7.03 (d, J 8.5 Hz, 1H, aromatic H), 4.85 (s, 2H, -NH₂), 4.61 (dd, J 12.25 Hz, 4.5 Hz, 1H, -CH₂), 4.49 (dd, J 12.5 Hz, 7.5 Hz, 1H, -CH₂), 4.36 (dd, J 7.25 Hz, 4.5 Hz, 1H, -CH); ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ /ppm 161.8, 149.3, 129.7, 127.9, 125.8, 118. 8, 118.7, 116.9, 80.3, 54.2, 34.8; HRMS (ESI-TOF) *m/z*: For C₁₁H₉N₃O₃ Calcd. [M+Na]⁺ 254.0542; Found [M+Na]⁺ 254.0508.

Figure S11. ¹³C NMR spectrum of 4d

Display Report										
Analysis Info Analysis Name Method Sample Name Comment	s Info Name D:\Data\User Data\External Samples\Bubun\BB-AP-S10-3.c Tune_pos_Standard.m Name MEOH nt		BB-AP-S10-3.d	Acquisition Date 5/12/2023 10:29:11 AM Operator HRMS Instrument maXis impact 1819696.0016/						
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	S S S S	et Nebulizer et Dry Heater et Dry Gas et Divert Valve et APCI Heater	0.5 Bar 200 °C 4.0 //min Source 0 °C				
Intens. x10 ⁵ - 3.0-		254.0508			BB-AP-S	10-3.d: +MS, 0.1min #:				
2.5-										
2.0-										
1.5-										
1.0-										
0.5-		ſ	270.0238		310.0897					
0.0	01 232.0704 1,1	240 260		, 0.1.,0 300	320					
BB-AP-S10-3.d Bruker Compass E	DataAnalysis 4.1	printed: 5/12/2023	10:32:10 AM	by: HRI	MS	Page 1 of 1				

Figure S12. HRMS spectrum of 4d

2-(2-*Amino-3-cyano-4H-chromen-4-yl*)-2-*cyanoacetamide* (**4e**). Off white solid, yield 92%; mp 168-169 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ /ppm 7.78 (s, 1H), 7.52 (s, 1H), 7.32 (t, J 11.25 Hz, 1H, aromatic H), 7.22 (d, J 7.5 Hz, 1H, aromatic H), 7.14 (s, 2H, -NH₂), 7.11 (d, J 7.5 Hz, 1H, aromatic H), 7.04 (d, J 8 Hz, 1H, aromatic H), 4.21 (d, J 5 Hz, 1H, -CH), 3.88 (d, J 5 Hz, 1H, -CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 179.2, 165.4, 163.6, 150.4, 129.8, 129.2, 124.9, 119.9, 117.3, 116.6, 51.9, 48.1, 37.3; HRMS (ESI-TOF) *m*/*z*: For C₁₃H₁₀N₄O₂ Calcd. [M+Na]⁺ 277.0701; Found [M+Na]⁺ 277.0937.

Figure S13. ¹H NMR spectrum of 4e

Figure S14. ¹³C NMR spectrum of 4e

Figure S15. HRMS spectrum of 4e

2-(2-*Amino-3-cyano-4H-chromen-4-yl)malononitrile* (**4f**). White solid, yield 87%; mp 153-155 °C; ¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ /ppm 7.53 (s, 2H, -NH₂), 7.48 (d, J 6 Hz, 1H, aromatic H), 7.43 (t, J 9.75 Hz, 1H, aromatic H), 7.28 (t, J 9. 5 Hz, 1H, aromatic H), 7.14 (d, J 7 Hz, 1H, aromatic H), 5.08 (d, J 2.5 Hz, 1H, -CH), 4.59 (d, J 2.5 Hz, 1H, -CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 163. 9, 150.2, 130.6, 129.3, 125.5, 119.8, 118.4, 116.8, 113.5, 113.4, 49.3, 37.6, 32.9; HRMS (ESI-TOF) m/z: For C₁₃H₈ N₄O Calcd. [M+K]⁺ 275.0335; Found [M+K]⁺ 275.0289.

Figure S16. ¹H NMR spectrum of 4f

Figure S17. ¹³C NMR spectrum of 4f

Figure S18. HRMS spectrum of 4f

2-*Amino-6-bromo-4-(phenylthio)-4H-chromene-3-carbonitrile* (**4g**). White solid, yield 88%; mp 181–183 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ /ppm 7.41 (d, J 2.5 Hz, 1H, aromatic H), 7.36-7.31 (m, 2H, aromatic H), 7.21 (t, J 7.5 Hz, 2H, aromatic H), 7.08 (s, 2H, -NH₂), 7.01 (dd, J 10.5 Hz, 1 Hz, 2H, aromatic H), 6.73 (d, J 9 Hz, 1H, aromatic H), 5.30 (s, 1H, -CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 162.43, 136.6, 131.8, 131.7 (2C), 129.6 (2C), 129.7 (2C), 124.4 (2C), 124.0, 118.3, 116.3, 53.6, 46.7; HRMS (ESI-TOF) *m/z*: For C₁₆H₁₁BrN₂OS Calcd. [M+Na]⁺ 380.9673; Found [M+Na]⁺ 381.3114.

Figure S19. ¹H NMR spectrum of 4g

Figure S20. ¹³C NMR spectrum of 4g

		Display	пероп			
Analysis Info Analysis Name Method Sample Name Comment	D:∖Data∖User Data∖∖ Tune_pos_Standar	External Samples\Bubun\B d.m	B-AP-S10-5.d	Acquisition Date Operator HF Instrument ma	e 5/11/202∶ RMS aXis impact	3 9:39:49 AM 1819696.00160
Acquisition Par Source Type Tocus Scan Begin Scan End	rameter ESI Active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Ne Set Dr Set D Set D Set D Set A	ebulizer y Heater y Gas vert Valve PCI Heater	0.5 Bar 200 °C 4.0 //min Source 0 °C
Intens. x10 ⁵ 4- - - - - - - - - -			381.3134		BB-AP-S1	0-5.d: +MS, 0.2min #10
2-						
1- - - - - - - - - - - - - - - - - - -	373.150 69.2567 370	376.3145 4.1536 375 38	382.9805	.9837 384.9791 385	389.1200 l 390	,, t ,, t , t .

Figure S21. HRMS spectrum of 4g

2-*Amino*-6,8-*dibromo*-4-(*phenylthio*)-4*H*-*chromene*-3-*carbonitrile* (**4h**). Light Yellow solid, yield 82%; mp 171–173 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ /ppm 7.74 (d, J 2 Hz, 1H, aromatic H), 7.49 (d, J 7.5 Hz, 1H, aromatic H), 7.41 (d, J 2 Hz, 1H, aromatic H), 7.37-7.34 (m, 3H, aromatic 1H & -NH₂), 7.26-7.22 (m, 2H, aromatic H), 6.99 (dd, J 8.25 Hz, 1 Hz 1H, aromatic H), 5.34 (s, 1H, -CH), ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 162.1, 145.9, 136.7, 134.2, 130.0 (2C), 129.9, 129.2 (2C), 128.1, 127.7, 119.5, 116.4, 110.5, 53.8, 47.0; HRMS (ESI-TOF) *m/z*: For C₁₆H₁₀Br₂N₂OS Calcd. [M+H]⁺ 436.8959; Found [M+H]⁺ 436.8742.

Figure S22. ¹H NMR spectrum of 4h

Figure S23. ¹³C NMR spectrum of 4h

Figure S24. HRMS spectrum of 4h

2-*Amino-6-bromo-4-(naphthalen-2-ylthio)-4H-chromene-3-carbonitrile* (**4i**). White solid, yield 90%; mp 181-183 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ /ppm 7.87-7.86 (m, 1H, aromatic H), 7.74 (d, J 8.5 Hz, 2H, aromatic H), 7.62 (s, 1H, aromatic H), 7.51-7.48 (m, 2H, aromatic H), 7.46 (d, J 2.5 Hz, 1H, aromatic H), 7.35 (dd, J 8.5 Hz, 2.5 Hz, 1H, aromatic H), 7.09 (dd, J 8.5 Hz, 1.5 Hz, 1H, aromatic H), 7.04 (s, 2H, -NH₂), 6.66 (d, J 8.5 Hz, 1H, aromatic H); 5.40 (s, 1H, -CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 162.4, 148.8, 136.5, 133.5, 133.2, 132.9, 131.9, 131.7, 128.6, 128.4, 128.3, 128.0, 127.4, 126.9, 124.5, 119.9, 118.2, 116.4, 53.9, 47.0; HRMS (ESI-TOF) *m/z*: For C₂₀H₁₃BrN₂OS Calcd. [M+Na]⁺ 432.2888; Found [M+Na]⁺ 432.9574.

Figure S26. ¹³C NMR spectrum of 4i

Figure S27. HRMS spectrum of 4i

2-*Amino*-6,8-*dibromo*-4-(*naphthalen*-2-*ylthio*)-4*H*-chromene-3-carbonitrile (**4j**). Off White solid, yield 94%; mp 173-175 °C; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H}$ /ppm 7.88-7.86 (m, 1H, aromatic H), 7.76 (d, J 8.5 Hz, 1H, aromatic H), 7.72 (d, J 2.5 Hz, aromatic H), 7.51-7.49 (m, 2H, aromatic H), 7.43 (d, J 2.5 Hz, 1H, aromatic H), 7.20 (s, 2H, -NH₂), 7.07 (dd, J 8.5 Hz, 1.5 Hz, 1H, aromatic H) 5.43 (s, 1H, CH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta_{\rm C}$ /ppm 162.1, 145.9, 136.4, 134.2, 133.5, 133.3, 132.8, 131.1, 129.8, 128.5, 128.3, 128.1, 127.6, 127.0, 125.9, 119.6, 116.5, 110.6, 53.9, 47.3; HRMS (ESI-TOF) *m*/*z*: For C₂₀H₁₂Br₂N₂OS Calcd. [M+Na]⁺ 511.1848; Found [M+Na]⁺ 510.8708.

Figure S28. ¹H NMR spectrum of 4j

Figure S29. ¹³C NMR spectrum of 4j

Figure S30. HRMS spectrum of 4j