
Cite as Arkivoc 2024 (2) 202312086 
DOI: https://doi.org/10.24820/ark.5550190.p012.086 Page 1 of 9 ©AUTHOR(S) 

 

A Platinum Open Access Journal 

for Organic Chemistry 
Paper 

Free to Authors and Readers DOAJ Seal Arkivoc 2024 (2) 202312086 

 

2-Phenylsulfanylhydroquinone dimer mono-quinone derivative as a new 
fluorescence dye responding to reductive conditions 

 

Akio Kamimura,* Kohki Abe, and Takuji Kawamoto  

 

Department of Applied Chemistry, Yamaguchi University, Ube 755-8611, Japan  

Email: ak10@yamaguchi-u.ac.jp  

 

Dedication to Prof. Samir Zard 

Received   09-14-2023 Accepted Manuscript  10-30-2023 Published on line   11-12-2023 

 

Abstract  

2-Phenylsulfanylhydroquinone dimer mono-quinone derivative was readily prepared via the selective 

deprotection and subsequent oxidation of 2-phenylsulfanylhydroquinone dimer tetramethyl ether. Controlled 

amounts of BBr3 achieved the selective deprotection of the OMe group; and this one-step procedure provided 

a convenient preparation of mono-methylated derivative, which was fluorescence active. Oxidation using 

NaIO4 quantitatively converted the latter to corresponding mono-quinone derivative, which did not exhibit 

fluorescence. Thus, this blue fluorescence activity was readily switched by oxidation or reduction between 

mono-methyl derivative and mono-quinone derivative.  
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Introduction 

 

Development of new fluorescence dyes has been of interest among organic chemists because it is regarded 

that such materials potentially open area of new science and technology.1,2 Thus far, a variety of fluorescence 

dyes have been developed and widely used in the fields of biochemistry and material science.3-25 Modified 

dyes are often used as fluorescence markers, which makes it easy to trace where the molecules are spread or 

distributed in biological systems. Some of these dyes are modified to exhibit fluorescence in response to 

chemical and/or biological stimuli, which allows to detect target molecules or reactions.26-28 For example, 

cancer cells in vivo are readily detected using rhodamine-based dyes.29 

Recently, we have developed a new fluorescence dye based on the 2-phenylsulfanylhydroquinone 

dimer,30-32 which is readily prepared from commercially available benzoquinone and thiophenol. The molecule 

is easily synthesized at multi-gram scale and emits strong blue fluorescence under UV irradiation. Its quantum 

yield reached 0.39 in MeOH solution.33 The fluorescence activity of the dye is controlled using the number of 

acyl units attached to it.34 We modified the dye to achieve sufficient water solubility and installed a tether unit 

that connects to a peptide molecule. Subsequently, we found that the dye functions as a fluorescence marker 

of bovine albumin serum (BSA) peptides in aqueous solution.35  

During our investigation for expanding the utility of the dye, we felt the need to develop a more 

convenient method for the chemical modification of the compound. After the dimerization reaction, 2-

phenylsulfanylhydroquinone dimer contains four OMe groups that are expected to undergo deprotection 

reaction to the corresponding phenol. We deprotected all of the OMe groups using excess amounts of BBr3, 

and subsequently obtained all OH derivative was selectively acetalized at the 2,2'-position.33 Although this 

strategy provides a reasonable transformation, it requires a multistep sequence for preparing the desired 

derivatives. We speculated that if the selective deprotection of these OMe groups could be achieved using 

controlled amounts of BBr3, this new strategy might provide a much shorter route for synthesizing the 

derivatives. In this paper, we report the selective deprotection of the four OMe groups using controlled 

amounts of BBr3. With this procedure, we have successfully developed a new fluorescence dye based on 2-

phenylsulfanylhydroquinone dimer mono-quinone derivative that responds to redox conditions. 

 

 

Results and Discussion 
 

Dimer 1, which was prepared using our previously reported method,33 was treated with various amounts of 

BBr3 in CH2Cl2. The results are summarized in Table 1. 

The reaction was carried out at 0 °C. When 1 equivalent of BBr3 was used, the dimethoxy derivative 2 was 

obtained as the major product in 42% yield (entry 1), accompanied with unreacted 1 in 16%. The yield of 2 was 

improved to 52% when the reaction time was prolonged to 12 h (entry 2). Note that neither the tri-

deprotected product 3 nor the tetra-deprotected product 4 was formed under these reaction conditions. 

When more than one equivalent of BBr3 was used, mono-methyl product 3 and hydroquinone dimer 4 were 

obtained. For example, when 1.5 equivalents of BBr3 was employed, compounds 2 and 3 were formed in 40% 

and 28% yields, respectively (entry 3). The highest yield of compound 3 was accomplished when 2.0 

equivalents of BBr3 was used (entry 4). As the amounts of BBr3 used increased, the yield of the all-deprotected 

compound 4 increased (entry 5). Compounds 2, 3, and 4 were readily separated by simple column 

chromatography. Thus, compound 2 and 3 were conveniently prepared from compound 1 in one step using 

the above procedure.  
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Table 1.  Selective deprotection of the methyl groups from tetramethyl ether 1 
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entry Time (h) BBr3 (equiv.) 2; Yield (%)a 3; Yield (%)a 4; Yield (%)a 1; Revovery (%)a 

1 5 1.0 42 0 0 16 

2 12 1.0 52 0 0 8 

3 5 1.5 40 28 0 0 

4 5 2.0 16 39 (36)b 9 0 

5 5 2.5 1 18 43 0 

a) NMR yields. b) Isolated yield. 

 

These results indicated that the deprotection of the methoxy groups at the 2-position occurred 

preferentially under these conditions, and the methyl groups in 5-position were deprotected more slowly. 

Hence, we assumed that BBr3 preferred to be chelated by the OMe groups at the 2- and 2’-positions, and this 

chelating effect accelerated the deprotection reaction at these positions.  

The obtained unsymmetrical hydroquinone dimers 3 was photoluminescent in MeOH solution and showed 

excellent blue fluorescence upon irradiation with 330 nm UV light. Its emission maximum appeared at 404 nm, 

and its quantum yield in MeOH reached 0.179. We assumed that the corresponding oxidation derivative, 

mono-quinone 5, would be photoluminescently  inactive. Indeed, this was true, and mono-quinone 5, readily 

obtained quantitatively by treatment of 3 with NaIO4 (Scheme 1), showed no fluorescence upon UV irradiation 

at its absorption peak observed at 312 nm. Its quantum yield was only 0.002, and we concluded that 

compound 5 was a non-fluorescent compound. Exposure of the mono-quinone 5 to ascorbic acid progressed 

smooth reduction to the mono-methyl derivative 3 in 92% yield. The reduction was also possible using 

aqueous Na2S2O4. 
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Scheme 1. Redox reactions between the mono-methylderivative 3 and the mono-quinone 5. 

 



Arkivoc 2024 (2) 202312086  Kamimura, A. et al. 

 

 Page 4 of 9  ©AUTHOR(S) 

Changes in the UV and PL spectra of compounds 3 and 5 were investigated during their oxidation and 

reduction reactions. To a solution of 3 in MeOH was added aqueous NaIO4 solution, and the UV and PL spectra 

of the resulting mixture were observed. After the addition of the oxidant, the UV spectra gradually changed 

and finally showed the spectra of compound 5 after 240 min. The fluorescence intensity decreased gradually 

and finally disappeared. In the UV spectra, we observed two isosbestic points at 314 and 361 nm. This 

indicated that the oxidation of mono-methyl derivative 3 to mono-quinone 5 progressed very cleanly and no 

significant side reaction occurred (Figure 1).  

 

 

 
 

Figure 1.  Changes of the UV and PL spectra of the mono-methyl derivative 3 during oxidation. 

 

 

 
 

Figure 2.  Changes of the UV and PL spectra of mono-quinone 5 during the reduction. 



Arkivoc 2024 (2) 202312086  Kamimura, A. et al. 

 

 Page 5 of 9  ©AUTHOR(S) 

The reduction process of mono-quinone 5 using ascorbic acid was also examined (Figure 2). The addition 

of ascorbic acid changed the UV spectrum of 5 immediately and the UV spectrum of mono-methyl derivative 3 

was observed within 30 min. Thus, the reduction of 5 under these conditions progressed very rapidly. We 

again observed two isosbestic points at 312 and 359 nm. These observations confirmed that the reduction 

reaction from 5 to 3 was also a clean reaction. In addition, the two isosbestic points during the oxidation and 

reduction processes are very close. Hence, this redox reaction is very clean and potentially useful for repeating 

the redox process between 3 and 5 for several times. Note that the blue fluorescence resumes as the 

reduction reaction of 5 progresses, and the emission spectrum to compound 3 is finally observed at the end of 

the reaction. This was also observed when the MeOH solution of mono-quinone 5 was irradiated with black 

light (max; 365 nm), and the blue fluorescence resumed and gradually became more intense as the reaction 

progressed (Figure 3). 

 

 
 

Figure 3.  Appearance of fluorescence when ascorbic acid solution was added to a solution of compound 5 in 

MeOH. The top row from left to right: pictures after 0 sec., 1 sec., and 2 sec. The bottom row from left to right: 

pictures after 3 sec., 4 sec., and 5 sec. 

 

 

Conclusions 
 

We have achieved selective removal of the methyl groups from the 2-phenylsulfanylhydroquinone dimer 

tetramethyl ether in one step using controlled amounts of BBr3. This simple and convenient process provides a 

one-step preparation of two-demethylated and three-demethylated derivatives. The 2-

phenylsulfanylhydroquinone dimer mono-quinone derivative may serve as a potential fluorescence sensor 

that responds to reductive conditions. Further application and improvement of the fluorescence properties of 

the dye are now under investigation in our laboratory. 
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Experimental Section 
 

General. All 1H and 13C NMR spectra were recorded on a JEOL Lamda-500 or JNM-ECA 500 Delta2 (500 MHz for 
1H and 126 MHz for 13C) spectrometer. High-resolution mass spectra (HRMS) were measured using a Waters 

Xevo G2-XS QTof ESI mass spectrometer. UV-vis spectra were measured using a SHIMADZU UV-1650PC 

spectrometer. Fluorescence spectra were measured using a JASCO FP-6200 fluorescence spectrometer. 

Absolute quantum yields were measured using a Hamamatsu Photonics C9920-02G absolute quantum yield 

spectrometer. All the reactions in this study were performed using dried solvent under nitrogen atmosphere 

unless otherwise mentioned. Compound 1, was prepared by the method reported in ref. 33, and compound 2 

and 4 prepared in this method are confirmed by comparison with physical data reported in the same 

reference.  

 

Preparation of compound 3 (mono-methyl derivative). To a solution of compound 1 (0.9838 g, 2.005 mmol) 

in CH2Cl2 (40 mL) was added BBr3 (4.1 mL in 1.0 M in CH2Cl2 solution, 4.1 mmol) at 0 °C, and the reaction 

mixture was stirred at the same temperature for 5 h. MeOH (20 mL) was added to the reaction mixture and 

the resulting solution was concentrated in vacuo. This manipulation was repeated for six times to remove 

borane-derived material as volatile B(OMe)3. Residue was purified through silica gel column chromatography 

(hexane-EtOAc 5:1 then 3:1 v/v), and compound 3 was obtained in 36% yield (0.3243 g, 0.7230 mmol). Brown 

solid. mp 62.6-66.6 °C. 1H NMR (500 MHz, CDCl3)  7.51 (dd, J = 7.8, 1.5 Hz, 2H), 7.44 – 7.35 (m, 3H), 7.28 (d, J = 

8.1 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.18 (s, 1H), 7.01 (s, 1H), 6.80 (s, 1H), 6.49 (s, 1H), 6.16 (s, 1H), 5.97 – 5.61 (br, 

2H), 3.89 (s, 3H). 13C NMR (126 MHz, CDCl3)  151.5, 151.0, 146.7, 146.6, 135.3, 133.9 (2C), 132.2, 129.7 (2C), 

129.5 (2C), 129.3, 128.5 (2C), 127.7, 126.7 (2C), 124.3, 122.4, 117.6, 117.6, 117.3, 113.2, 56.7. HRMS (TOF-

ES+): calcd for C25H21O4S2 449.0881 [M + H+], found 449.0884. max 330 nm,  = 2.9 × 104 M-1cm-1 (MeOH, 1 × 

10-5 M to 5.5 × 10-5 M). em = 404 nm,  = 0.179 (1.3 × 10-5 M in MeOH). 

Preparation of mono-quinone 5. To a solution of compound 3 (0.1798 g, 0.401 mmol) in MeOH (40 mL) was 

added aqueous NaIO4 (0.0887 g, 0.4147 mmol) solution (2 mL) at room temperature, and the reaction mixture 

was stirred at the same temperature for 1.5 h. MeOH (20 mL) was removed by rotary evaporator and 

remaining aqueous mixture was extracted with CH2Cl2 (5 × 5 mL). The organic phase was combined and dried 

over Na2SO4. After filtration, the CH2Cl2 solution was concentrated and the obtained crude product was 

purified through silica gel column chromatography (hexane-EtOAc 4:1 v/v). Compound 5 was obtained in 77% 

yield (0.1385 g, 0.3102 mmol). Brown solid. mp 82.1 - 85.3 °C. 1H NMR (500 MHz, CDCl3)  7.56 – 7.49 (m, 7H), 

7.45 – 7.38 (m, 3H), 7.22 (s, 1H), 6.87 (s, 1H), 6.61 (s, 1H), 6.33 (s, 1H), 5.96 (s, 1H), 3.88 (s, 3H). 13C NMR (126 

MHz, CDCl3)  186.7, 183.7, 155.9, 150.0, 148.7, 147.4, 135.7 (2C), 135.2 (2C), 134.1, 134.1, 130.9, 130.7, 130.6 

(2C), 129.9 (2C), 129.3, 126.7, 126.2, 118.6, 117.9, 112.0, 56.7. HRMS (TOF-ES+): calcd for C25H19O4S2 447.0725 

[M + H+], found 447.0728. max 312 nm,  = 3.7 × 104 M-1cm-1 (MeOH, 1.8 × 10-5 M to 3.1 × 10-5 M). em = 402 

nm,  = 0.002 (2.46 × 10-5 M in MeOH). 

Reduction of mono-quinone 5. Aqueous ascorbic acid solution (60.6 mg, 0.346 mmol in 2 mL water) was 

added to a solution of compound 5 (138.5 mg, 0.310 mmol) in MeOH (20 mL) at room temperature, and the 

reaction mixture was stirred for 1 h. MeOH was evaporated and remaining aqueous solution was extracted 

with CH2Cl2 (3 × 5 mL). The organic phase was combined and dried over Na2SO4. After filtration,  the CH2Cl2 

solution was concentrated and compound 3 was obtained in 92% yield (128.5 mg, 0.287 mmol). NMR data 

were identical to compound 3. 
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