Supplementary Material

Sterically controlled rhenium-catalyzed hydroxyl transposition

Edouard Caron-Duval and Claude Spino*

Université de Sherbrooke, Département de chimie, 2500 Boul. Université, Sherbrooke, QC, J1K 2R1, Canada Email: <u>Claude.Spino@USherbrooke.ca</u>

Table of Contents

Copies of ¹ H and ¹³ C-NMR Spectra	S4
(1 <i>R</i>)-(<i>E</i>)- 3-Cyclohexyl-1-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (16e) (¹ H NMR)	S4
(1 <i>R</i>)-(<i>E</i>)- 3-Cyclohexyl-1-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (16e) (¹³ C NMR)	S5
(1 <i>S</i>)-(<i>E</i>)- 3-Cyclohexyl-1-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (19e) (¹ H NMR)	S6
(1 <i>S</i>)-(<i>E</i>)- 3-Cyclohexyl-1-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (19e) (¹³ C NMR)	S7
(1 <i>S</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-yne-1,4-diol (23) (¹ H NMR)	S8
(1 <i>S</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-yne-1,4-diol (23) (¹³ C NMR)	S9
(1 <i>R</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-yne-1,4-diol (24) (¹ H NMR)	S10
(1 <i>R</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-yne-1,4-diol (24) (¹³ C NMR)	S11
(1 <i>R</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-en-1,4-diol (16f) (¹ H NMR)	S12
(1 <i>R</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-en-1,4-diol (16f) (¹³ C NMR)	S13
(1 <i>S</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-en-1,4-diol (19f) (¹ H NMR)	S14
(1 <i>S</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)but-2-en-1,4-diol (19f) (¹³ C NMR)	S15
(1 <i>R</i>)-(<i>E</i>)-4-(<i>t</i> -Butyldimethylsilyloxy)-1-(<i>p</i> -menthan-3-yl)but-2-en-1-ol (16g) (¹ H NMR)	S16
(1 <i>R</i>)-(<i>E</i>)-4-(<i>t</i> -Butyldimethylsilyloxy)-1-(<i>p</i> -menthan-3-yl)but-2-en-1-ol (16g) (¹³ C NMR)	S17
(1S)-(E)-4-(t-Butyldimethylsilyloxy)-1-(p-menthan-3-yl)but-2-en-1-ol (19g) (¹ H NMR)	S18
(1S)-(E)-4-(t-Butyldimethylsilyloxy)-1-(p-menthan-3-yl)but-2-en-1-ol (19g) (¹³ C NMR)	S19
(1 <i>R</i>)-(<i>E</i>)-6-(<i>t</i> -Butyldimethylsilyloxy)-1-(<i>p</i> -menthan-3-yl)hex-2-en-1-ol (26) (¹ H NMR)	S20
(1 <i>R</i>)-(<i>E</i>)-6-(<i>t</i> -Butyldimethylsilyloxy)-1-(<i>p</i> -menthan-3-yl)hex-2-en-1-ol (26) (¹³ C NMR)	S21
(1 <i>R</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)hex-2-en-1,6-diol (27) (¹ H NMR)	S22
(1 <i>R</i>)-(<i>E</i>)-1-(<i>p</i> -Menthan-3-yl)hex-2-en-1,6-diol (27) (¹³ C NMR)	S23
(1 <i>R</i>)-(<i>E</i>)-6-Azido-1-(<i>p</i> -menthan-3-yl)hex-2-en-1-ol (16h) (¹ H NMR)	S24
(1 <i>R</i>)-(<i>E</i>)-6-Azido-1-(<i>p</i> -menthan-3-yl)hex-2-en-1-ol (16h) (¹³ C NMR)	S25
(1 <i>S</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)prop-2-yn-1-ol (28) (¹ H NMR)	S26
(1S)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)prop-2-yn-1-ol (28) (¹³ C NMR)	S27

(1S)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (28) (¹⁹ F NMR)	S28
(1 <i>R</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)prop-2-yn-1-ol (29) (¹ H NMR)	S29
(1 <i>R</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)prop-2-yn-1-ol (29) (¹³ C NMR)	S30
(1R)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (29) (¹⁹ F NMR)	S31
(1 <i>R</i>)-(<i>E</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (16i) (¹ H NMR)	S32
(1R)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (16i) (¹³ C NMR)	S33
(1R)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (16i) (¹⁹ F NMR)	S34
(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (19i) (¹ H NMR)	S35
(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (19i) (¹³ C NMR)	S36
(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (19i) (¹⁹ F NMR)	S37
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)but-3-en-2-ol (17a) (¹ H NMR)	S38
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)but-3-en-2-ol (17a) (¹³ C NMR)	S39
(3S)-(E)-5-(p-Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (17b) (¹ H NMR)	S40
(3 <i>S</i>)-(<i>E</i>)-5-(<i>p</i> -Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (17b) (¹³ C NMR)	S41
(6 <i>R</i>)-(<i>E</i>)-8-(<i>p</i> -Menthan-3-yl)oct-7-en-6-ol (17c) (¹ H NMR)	S42
(6 <i>R</i>)-(<i>E</i>)-8-(<i>p</i> -Menthan-3-yl)oct-7-en-6-ol (17c) (¹³ C NMR)	S43
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)-1-phenylbut-3-en-2-ol (17d) (¹ H NMR)	S44
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)-1-phenylbut-3-en-2-ol (17d) (¹³ C NMR)	S45
(1S)-(E)-1-Cyclohexyl-3-(p-menthan-3-yl)prop-2-en-1-ol (17e) (¹ H NMR)	S46
(1S)-(E)-1-Cyclohexyl-3-(p-menthan-3-yl)prop-2-en-1-ol (17e) (¹³ C NMR)	S47
(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-1,2-diol (17f) (¹ H NMR)	S48
(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-1,2-diol (17f) (¹³ C NMR)	S49
(2S)-(E)-1-(t-Butyldimethylsilyloxy)-4-(p-menthan-3-yl)but-3-en-2-ol (17g) (¹ H NMR)	S50
(2S)-(E)-1-(t-Butyldimethylsilyloxy)-4-(p-menthan-3-yl)but-3-en-2-ol (17g) (¹³ C NMR)	S51
(4 <i>R</i>)-(<i>E</i>)-1-Azido-6-(<i>p</i> -menthan-3-yl)hexen-5-en-4-ol (17h) (¹ H NMR)	S52
(4 <i>R</i>)-(<i>E</i>)-1-Azido-6-(<i>p</i> -menthan-3-yl)hexen-5-en-4-ol (17h) (¹³ C NMR)	S53
(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)-prop-2-en-1-ol (17i) (¹ H NMR)	S54
(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)-prop-2-en-1-ol (17i) (¹³ C NMR)	S55
(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-2-ol (18a) (¹ H NMR)	S56
(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-2-ol (18a) (¹³ C NMR)	S57
(3 <i>R</i>)-(<i>E</i>)-5-(<i>p</i> -Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (18b) (¹ H NMR)	S58
(3 <i>R</i>)-(<i>E</i>)-5-(<i>p</i> -Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (18b) (¹³ C NMR)	S59
(6S)-(E)-8-(p-Menthan-3-yl)oct-7-en-6-ol (18c) (¹ H NMR)	S60
(6S)-(E)-8-(p-Menthan-3-yl)oct-7-en-6-ol (18c) (¹³ C NMR)	S61
(2S)-(E)-4-(p-Menthan-3-yl)-1-phenylbut-3-en-2-ol (18d) (¹ H NMR)	S62
(2S)-(E)-4-(p-Menthan-3-yl)-1-phenylbut-3-en-2-ol (18d) (¹³ C NMR)	S63
(1 <i>R</i>)-(<i>E</i>)-1-Cyclohexyl-3-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (18e) (¹ H NMR)	S64
(1 <i>R</i>)-(<i>E</i>)-1-Cyclohexyl-3-(<i>p</i> -menthan-3-yl)prop-2-en-1-ol (18e) (¹³ C NMR)	S65
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)but-3-en-1,2-diol (18f) (¹ H NMR)	S66
(2 <i>R</i>)-(<i>E</i>)-4-(<i>p</i> -Menthan-3-yl)but-3-en-1,2-diol (18f) (¹³ C NMR)	S67

(2 <i>R</i>)-(<i>E</i>)-1-(<i>t</i> -Butyldimethylsilyloxy)-4-(<i>p</i> -menthan-3-yl)but-3-en-2-ol (18g) (¹ H NMR)	S68
(2 <i>R</i>)-(<i>E</i>)-1-(<i>t</i> -Butyldimethylsilyloxy)-4-(<i>p</i> -menthan-3-yl)but-3-en-2-ol (18g) (¹³ C NMR)	S69
(1 <i>R</i>)-(<i>E</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)-prop-2-en-1-ol (18 i) (¹ H NMR)	S70
(1 <i>R</i>)-(<i>E</i>)-1-Trifluoromethyl-4-(<i>p</i> -menthan-3-yl)-prop-2-en-1-ol (18i) (¹³ C NMR)	S71
(5 <i>R</i>)-5-Pentylfuran-2(5H)-one (20) (¹ H NMR)	S73
5-Azido-2-hydroxypentanoic acid 21 (¹ H NMR)	S74
5-Azido-2-hydroxypentanoic acid 21 (¹³ C NMR)	S75
(3 <i>R</i>)-3-Hydroxypiperidin-2-one (22) (¹ H NMR)	S76
Copies of HPLC traces	S77
HPLC of rearrangement of 16a .	S77
HPLC of rearrangement of 16b .	S77
HPLC of rearrangement of 19b .	S78
HPLC of rearrangement of 16c .	S80
HPLC of rearrangement of 19c .	S81
HPLC of rearrangement of 16d .	S82
HPLC of rearrangement of 19d .	S83
X-Ray data	S84
(E)-(1S)-4-(p-Menthan-3-yl)-1-trifluoromethylprop-2-en-1-ol (17i)	S84

(15)-(E)- 3-Cyclohexyl-1-(p-menthan-3-yl)prop-2-en-1-ol (19e) (¹³C NMR)

(15)-1-(p-Menthan-3-yl)but-2-yne-1,4-diol (23) (¹³C NMR)

Z:/ECD-4-11-C2-F3/10/fid

-

15

20

25

30

35

40

45

50

55 f1 (ppm)

60

65

70

75

80

85

90

95

0

ANNANA MANANANA ANA £5.21 — MMMM ~ 51.65 22.85 24.13 12.92 ----~ 35'34 ~ 34'30 ~ 32'15 MUMINUM ^{22.44}.30 Northman 95.12 ----AMMAMMAN AND 79.63 — _ ?พมพลหากหางทายกล้ายคุณพลังสามารถรับการที่จะการที่จะการการการการที่ไปไปสี่ผู้พุพภารมากของกับสามาร์ก 87.28 24.48 Z:/ECD-4-11-C2-F3/11/fid

(1R)-1-(p-Menthan-3-yl)but-2-yne-1,4-diol (24) (¹³C NMR)

(1R)-(E)-1-(p-Menthan-3-yl)but-2-en-1,4-diol (16f) (¹H NMR)

-65.21 ----~ 35.89 ~ 33.78 ~ 35.28 51.64 — 21.64 — **₽**8.88 — SZ.07 — (ppm) Ę Z:/ECD2/1-13-P**2/1**0/fid ∺ ⊟ ∐ | amannaha

(1*R*)-(*E*)-1-(*p*-Menthan-3-yl)but-2-en-1,4-diol (16f) (¹³C NMR)

(15)-(E)-1-(p-Menthan-3-yl)but-2-en-1,4-diol (19f) (¹³C NMR)

(1R)-(E)-4-(t-Butyldimethylsilyloxy)-1-(p-menthan-3-yl)but-2-en-1-ol (16g) (¹H NMR)

(1R)-(E)-6-(t-Butyldimethylsilyloxy)-1-(p-menthan-3-yl)hex-2-en-1-ol (26) (¹H NMR)

(1*R*)-(*E*)-1-(*p*-Menthan-3-yl)hex-2-en-1,6-diol (27) (¹H NMR)

(1*R*)-(*E*)-6-Azido-1-(*p*-menthan-3-yl)hex-2-en-1-ol (16h) (¹H NMR)

(1R)-(E)-6-Azido-1-(p-menthan-3-yl)hex-2-en-1-ol (16h) (¹³C NMR)

Z:/ECD-3-60-C1-F3/10/fid

(15)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (28) (¹H NMR)

(1S)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (28) (¹³C NMR)

(15)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (28) (¹⁹F NMR)

(1R)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (29) (¹H NMR)

Z:/ECD-3-60-C2-F1/10/fid

	<u>₹</u> ["	
FC'CT —		
6+'12 / 12.'22 /		
51:42 ~ 59:72		
	30- 	
95'4E ~ 26'4E ~	32	
∠Z*++>		
21:59	65 65	
	IVINIMINI - C	
		(mqq
		_
		Ę
		11 (
82.88 —	85 85	11 (
85.88 —		11 (
82.88 —		F1 (
82.88 —		11 (
85.38 —		11 (
85.38 —	Meditioned production and particular interpretation of the second s	F1 (
82.98 —	Muuten heed many ended in the house of the head in the	F1 (
82.98 —	1)44)4000000000000000000000000000000000	T1 (
82.98 —	Wardwardhijkadjanthenimmanijandarjandarjandarjandarjandarjandarjandarjandarjandarjandarjandarjandarjandarjandar	[1] (
95.98 —	11111111111111111111111111111111111111	r1 (
G1-5/11/fd	And Manual (Manual Manual Ma 20 1 2 2 1 2 0 11 5 11 0 10 5 10 0 9 5 9 0 8 5 80	f1 (
J-00-C1-F5/11/Id	WINTERPRONTING	f1 (
S. 260-23-60-C1-F5/11/fd	INVOIDMINIMUMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAMATIONAM	f1 (

(1R)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-yn-1-ol (29) (¹³C NMR)

(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (19i) (¹H NMR)

Z:/ECD-4-5-P2/20/fid

(1S)-(E)-1-Trifluoromethyl-4-(p-menthan-3-yl)prop-2-en-1-ol (19i) (¹⁹F NMR)

-62.85

- 3000 2000 - 1500 - 4000 3500 2500 - 1000 500 haqinidadiyininganganananganananangangananganganganan 🗕 O -10 0 10 ∠⊅'Sī — 5172 52724 52724 53752 54756 58782 20 MMM/MM 30 28 82 25.56 25.30 25.30 MUMMMMMM 40 43.24 74.27 747.26 50 60 51.69 — 70 and photometric presenting in the contraction of the section of th 80 6 100 f1 (ppm) 110 120 130 - 133'30 - 132'33 140 150 160 170 180 190 200 210 2

(2R)-(E)-4-(p-Menthan-3-yl)but-3-en-2-ol (17a) (¹³C NMR)

(3*S*)-(*E*)-5-(*p*-Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (17b) (¹H NMR)

2100	- 2000	- 1900	- 1800	- 1700	- 1600	- 1500	- 1400	- 1300	- 1200	- 1100	- 1000	- 900	- 800	- 700	- 600	- 500	- 400	- 300	- 200	- 100	0 -	100	200	0
(0)(1)																					MMMMMM			15
29 51																					NNMNN			- 20
74,42 23,04 71,71	111																				Why My			
26.45 29.84 29.92	~																-				r ¹ ///////			- 0£
82,99 83,98 85,34	11																				WWWWW			32
																					What where the second s		-	- 6
82.8 1	,																				MM/M/M		-	- 45 -
																					NNNNN			20
																					NMMMMM			- 22
																					M/MM/M/W			- 09
																					NINNNN			
89.17																					WWWW			- 02
91.77	7																				I I WINW			- 75 - 75
95.77 92.77	7																				MMM/Mu			 80 f1 (ppr
																					MMMM			- 82
																					Wuhufum			- 06
																					ANNNAN A			95
																					NVNNNNNN		-	5 100
																					diywww.			0 10
																					UNIVANNA N			.5
																					MMMMM			20 11
																					UNINNIN			25 13
20.721																					MMMM			30 1:
																					UMMMMM			35 1
																					MMMMMM			40
92.141																					Nuluuluvu			45 1
																					NNNIMI			20

(3S)-(E)-5-(p-Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (17b) (¹³C NMR)

©AUTHOR(S)

(6R)-(E)-8-(p-Menthan-3-yl)oct-7-en-6-ol (17c) (¹H NMR)

(2*R*)-(*E*)-4-(*p*-Menthan-3-yl)-1-phenylbut-3-en-2-ol (17d) (¹H NMR)

(2R)-(E)-4-(p-Menthan-3-yl)-1-phenylbut-3-en-2-ol (17d) (¹³C NMR)

©AUTHOR(S)

(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-1,2-diol (17f) (¹³C NMR)

(4R)-(E)-1-Azido-6-(p-menthan-3-yl)hexen-5-en-4-ol (17h) (¹H NMR)

(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-2-ol (18a) (¹H NMR)

- 3200 - 1200 - 1000 - -200 TANYA MATANA MANAMANA 24.24 23.60 24.24 ู่นูปหลุกเครื่องเราไหการให้คริปหลดที่มายระดาณกลุ่มมาครูปสามครูปสามครูปสามครูปสามครูปสามาร์บุกอยประสมุณการครูสไป เป็น 61.82 — ∠s[.]zε — 08.25 — 22.54 22.54 - 47.30 ZI.69 — (mqq) and with a structure of a structure of a structure of the Ę Z:/ECD-3-9-Cr-18319fid 135 33 | |

(2S)-(E)-4-(p-Menthan-3-yl)but-3-en-2-ol (18a) (¹³C NMR)

(3*R*)-(*E*)-5-(*p*-Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (18b) (¹H NMR)

(3R)-(E)-5-(p-Menthan-3-yl)-2,2-dimethylpent-4-en-3-ol (18b) (¹³C NMR)

--100 -200 ×۲۲.44 22.55 22.56 22.10 50.82 -92'1E 57'32'42 91.25 ---zε.τε — 91.57 ~ CDCI3 80 (bpm) 27.42 CDCl3 £ ECD-3-43-P2.20.fid carbon.s CDCl3 ₅(C:\data} spino 14 6.66 1 13 1 11 1 1 L

(6*S*)-(*E*)-8-(*p*-Menthan-3-yl)oct-7-en-6-ol (18c) (¹³C NMR)

(2S)-(E)-4-(p-Menthan-3-yl)-1-phenylbut-3-en-2-ol (18d) (¹H NMR)

©AUTHOR(S)

(1R)-(E)-1-Cyclohexyl-3-(p-menthan-3-yl)prop-2-en-1-ol (18e) (¹H NMR)

(1*R*)-(*E*)-1-Cyclohexyl-3-(*p*-menthan-3-yl)prop-2-en-1-ol (18e) (¹³C NMR)

Z:/ECD-4-20-P2/10/fid

-WWWWWWW 15 64.21 — 20 ~_____ ~____ ~____ 21.4.17 25 72.85 — 30 es.ss — 35 62.25 — 40 12.54 ~ 12.54 ~ 12.74 ~ 45 THUMAN MANANA AND THE TANK 50 55 60 65 18.99 www.whouwww. 20 24.67 — 75 Ì (mdd) (ppm) Ę 85 90 95 100 105 110 115 W/W/WWW/W/WW/www. 120 125 05.721 — 130 Z:/ECD-4-20-**អ្**2/11/fid ឆ | 135 140 145 20

(2*R*)-(*E*)-4-(*p*-Menthan-3-yl)but-3-en-1,2-diol (18f) (¹³C NMR)

(6R)-(E)-8-(p-Menthan-3-yl)oct-7-en-6-ol, acryloyl ester (30) (¹H NMR)

5-Azido-2-hydroxypentanoic acid 21 (¹H NMR)

(3*R*)-3-Hydroxypiperidin-2-one (22) (¹H NMR)

Copies of HPLC traces

All HPLCs were run on a Shimadzu LC using the same column and the same method : OZ_H_1_IPA_1.3 mL_min.lcm

HPLC of rearrangement of 16a.

1st spectrum, mixture of **17a** and **18a**. 2nd spectrum, rearrangement of **16a** (crude)

C:\LabSolutions\Data\Edouard\20190426-2.lcd

HPLC of rearrangement of 16b.

Total

100.000

5454583

5602979

1st spectrum, **16b**. 2nd spectrum rearrangement of **16b**. 3rd spectrum **18b**

C:\LabSolutions\Data\Edouard\20190828-7.lcd

HPLC of rearrangement of 19b.

1st spectrum **19b**. 2nd spectrum rearrangement of **19b**. 3rd spectrum **17b**.

C:\LabSolutions\Data\Edouard\20190828-8.lcd

HPLC of rearrangement of 16c.

1st spectrum **16c**. 2nd spectrum rearrangement of **16c**. 3rd spectrum **18c**.

C:\LabSolutions\Data\Edouard\20191217-5.lcd

HPLC of rearrangement of 19c.

1st spectrum **19c**. 2nd spectrum rearrangement of **19c**. 3rd spectrum **17c**.

HPLC of rearrangement of 16d.

1st spectrum **16d**. 2nd spectrum rearrangement of **16d**. 3rd spectrum **18d**.

©AUTHOR(S)

HPLC of rearrangement of 19d.

1st spectrum **19d**. 2nd spectrum rearrangement of **19d**. 3rd spectrum **17d**.

©AUTHOR(S)

X-Ray data

(E)-(1S)-4-(p-Menthan-3-yl)-1-trifluoromethylprop-2-en-1-ol (17i) Sample ECD_4_12_P1. Deposition number : CCDC 2290613

A Needle-like specimen of $C_{14}H_{23}F_{3}O$, approximate dimensions 0.060 mm x 0.110 mm x 0.700 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured (λ = 1.54178 Å).

The total exposure time was 4.80 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a trigonal unit cell yielded a total of 14386 reflections to a maximum θ angle of 70.86° (0.82 Å resolution), of which 2648 were independent (average redundancy 5.433, completeness = 98.0%, $R_{int} = 10.20\%$ $R_{sig} = 8.16\%$ and 2237 (84.48%) $2\sigma(F^2)$. The final cell were greater than constants of a = 14.3818(2) Å, b = 14.3818(2) Å, c = 6.23960(10) Å, volume = 1117.67(4) Å³, are based upon the refinement of the XYZ-centroids of 9751 reflections above 20 $\sigma(I)$ with 7.097° < 2θ < 141.5°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.621. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4680 and 0.7530.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 31, with Z = 3 for the formula unit, C₁₄H₂₃F₃O. The final anisotropic full-matrix least-squares refinement on F² with 167 variables converged at R1 = 5.11%, for the observed data and wR2 = 13.75% for all data. The goodness-of-fit was 1.061. The largest peak in the final difference electron density synthesis was 0.215 e⁻/Å³ and the largest hole was -0.209 e⁻/Å³ with an RMS deviation of 0.049 e⁻/Å³. On the basis of the final model, the calculated density was 1.178 g/cm³ and F(000), 426 e⁻.

Table 1. Sample and crystal data.

Spino_ECD_4_12_P1			
$C_{14}H_{23}F_{3}O$			
264.32 g/mol			
173(2) K			
1.54178 Å			
0.060 x 0.110 x 0.700	0.060 x 0.110 x 0.700 mm		
trigonal			
P 31			
a = 14.3818(2) Å	α = 90°		
b = 14.3818(2) Å	β = 90°		
c = 6.23960(10) Å	γ = 120°		
1117.67(4) Å ³			
3			
1.178 g/cm ³			
0.824 mm ⁻¹			
426			
	Spino_ECD_4_12_P1 $C_{14}H_{23}F_{3}O$ 264.32 g/mol 173(2) K 1.54178 Å 0.060 x 0.110 x 0.700 trigonal P 31 a = 14.3818(2) Å b = 14.3818(2) Å c = 6.23960(10) Å 1117.67(4) Å^3 3 1.178 g/cm ³ 0.824 mm ⁻¹ 426		

 Table 2. Data collection and structure refinement.

Theta range for data collection	3.55 to 70.86°		
Index ranges	-17<=h<=17, -15<=k<=17, -6<=l<=7		
Reflections collected	14386		
Independent reflections	2648 [R(int) = 0.1020]		
Coverage of independent reflections	98.0%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7530 and 0.4680		
Structure solution technique	direct methods		
Structure solution program	XT, VERSION 2014/5		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2648 / 1 / 167		
Goodness-of-fit on F ²	1.061		
Final R indices	2237 data; R1 = 0.0511, wR2 = 0.1292 I>2σ(I)		
	all data R1 = 0.0633, wR2 = 0.1375		
Weighting scheme	w=1/ $[\sigma^2(F_o^2)+(0.0722P)^2]$ where P= $(F_o^2+2F_c^2)/3$		
Absolute structure parameter	0.13(16)		
Largest diff. peak and hole	0.215 and -0.209 eÅ ⁻³		
R.M.S. deviation from mean	0.049 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.2180(3)	0.3149(3)	0.5275(5)	0.0228(7)
C2	0.3209(3)	0.3188(3)	0.6146(5)	0.0235(7)
С3	0.2936(3)	0.2184(3)	0.7444(5)	0.0281(8)
C4	0.2150(3)	0.1982(3)	0.9267(5)	0.0294(8)
C5	0.1137(3)	0.1910(3)	0.8348(6)	0.0329(8)
C6	0.1388(3)	0.2924(3)	0.7119(5)	0.0295(8)
C7	0.2410(3)	0.4134(3)	0.3925(6)	0.0308(8)
C8	0.1408(4)	0.3996(3)	0.2806(6)	0.0350(9)
C9	0.2940(4)	0.5183(4)	0.5198(9)	0.0512(13)
C10	0.1905(4)	0.0986(3)	0.0559(6)	0.0416(10)
C11	0.3951(3)	0.3305(3)	0.4358(5)	0.0249(7)
C12	0.4978(3)	0.4056(3)	0.4172(5)	0.0271(8)
C13	0.5657(3)	0.4082(3)	0.2341(5)	0.0264(8)
C14	0.6075(3)	0.5114(3)	0.1052(7)	0.0357(9)
F1	0.5263(2)	0.5188(2)	0.0201(5)	0.0558(8)
F2	0.6649(2)	0.5991(2)	0.2255(5)	0.0552(7)
F3	0.6704(2)	0.5167(2)	0.9437(4)	0.0541(8)
01	0.65421(19)	0.4008(2)	0.3155(4)	0.0279(6)

Table 4. Bond lengths (Å).

C1-C7	1.535(5)	C1-C6	1.536(5)
C1-C2	1.551(5)	C1-H1	1.0
C2-C11	1.493(5)	C2-C3	1.525(5)
C2-H2	1.0	C3-C4	1.526(5)
C3-H3A	0.99	C3-H3B	0.99
C4-C5	1.521(5)	C4-C10	1.524(5)
C4-H4	1.0	C5-C6	1.522(6)
C5-H5A	0.99	C5-H5B	0.99
C6-H6A	0.99	C6-H6B	0.99
C7-C8	1.522(5)	C7-C9	1.529(6)
С7-Н7	1.0	C8-H8A	0.98
C8-H8B	0.98	C8-H8C	0.98
C9-H9A	0.98	C9-H9B	0.98
С9-Н9С	0.98	C10-H10A	0.98
C10-H10B	0.98	C10-H10C	0.98
C11-C12	1.329(5)	C11-H11	0.95
C12-C13	1.492(5)	C12-H12	0.95
C13-O1	1.422(4)	C13-C14	1.523(5)
C13-H13	1.0	C14-F3	1.331(5)
C14-F1	1.335(5)	C14-F2	1.340(6)
O1-H14	0.84		

Table 5. Bond angles (°).

C7-C1-C6	113.6(3)	C7-C1-C2	113.5(3)
C6-C1-C2	109.8(3)	C7-C1-H1	106.5
C6-C1-H1	106.5	C2-C1-H1	106.5
C11-C2-C3	109.6(3)	C11-C2-C1	110.9(3)
C3-C2-C1	111.2(3)	С11-С2-Н2	108.3
С3-С2-Н2	108.3	С1-С2-Н2	108.3
C2-C3-C4	113.1(3)	C2-C3-H3A	109.0
C4-C3-H3A	109.0	C2-C3-H3B	109.0
C4-C3-H3B	109.0	НЗА-СЗ-НЗВ	107.8
C5-C4-C10	111.9(3)	C5-C4-C3	109.0(3)
C10-C4-C3	112.0(3)	C5-C4-H4	107.9
C10-C4-H4	107.9	C3-C4-H4	107.9
C4-C5-C6	111.4(3)	C4-C5-H5A	109.4
C6-C5-H5A	109.4	C4-C5-H5B	109.4
C6-C5-H5B	109.4	H5A-C5-H5B	108.0
C5-C6-C1	112.0(3)	C5-C6-H6A	109.2
C1-C6-H6A	109.2	C5-C6-H6B	109.2
C1-C6-H6B	109.2	H6A-C6-H6B	107.9
C8-C7-C9	109.8(3)	C8-C7-C1	112.3(3)
C9-C7-C1	113.3(3)	С8-С7-Н7	107.0
С9-С7-Н7	107.0	С1-С7-Н7	107.0
C7-C8-H8A	109.5	С7-С8-Н8В	109.5
Н8А-С8-Н8В	109.5	C7-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
С7-С9-Н9А	109.5	С7-С9-Н9В	109.5
Н9А-С9-Н9В	109.5	С7-С9-Н9С	109.5
Н9А-С9-Н9С	109.5	H9B-C9-H9C	109.5
C4-C10-H10A	109.5	C4-C10-H10B	109.5
H10A-C10-H10B	109.5	C4-C10-H10C	109.5
H10A-C10-H10C	109.5	H10B-C10-H10C	109.5
C12-C11-C2	126.7(3)	C12-C11-H11	116.6
C2-C11-H11	116.6	C11-C12-C13	122.3(3)
C11-C12-H12	118.8	C13-C12-H12	118.8
O1-C13-C12	108.9(3)	O1-C13-C14	109.2(3)
C12-C13-C14	111.3(3)	O1-C13-H13	109.1

C12-C13-H13	109.1	C14-C13-H13	109.1
F3-C14-F1	106.9(3)	F3-C14-F2	106.8(3)
F1-C14-F2	107.5(3)	F3-C14-C13	112.4(3)
F1-C14-C13	110.7(3)	F2-C14-C13	112.3(3)
C13-O1-H14	109.5		

Table 6. Torsion angles (°).

C7-C1-C2-C11	-56.9(4)	C6-C1-C2-C11	174.8(3)
C7-C1-C2-C3	-179.1(3)	C6-C1-C2-C3	52.5(4)
C11-C2-C3-C4	-178.1(3)	C1-C2-C3-C4	-55.1(4)
C2-C3-C4-C5	56.6(4)	C2-C3-C4-C10	-179.1(3)
C10-C4-C5-C6	178.2(3)	C3-C4-C5-C6	-57.4(4)
C4-C5-C6-C1	58.3(4)	C7-C1-C6-C5	177.0(3)
C2-C1-C6-C5	-54.7(4)	C6-C1-C7-C8	-62.6(4)
C2-C1-C7-C8	171.0(3)	C6-C1-C7-C9	62.5(4)
C2-C1-C7-C9	-63.9(4)	C3-C2-C11-C12	-111.0(4)
C1-C2-C11-C12	125.8(4)	C2-C11-C12-C13	178.2(3)
C11-C12-C13-O1	-120.6(4)	C11-C12-C13-C14	118.9(4)
O1-C13-C14-F3	58.3(4)	C12-C13-C14-F3	178.6(3)
O1-C13-C14-F1	177.8(3)	C12-C13-C14-F1	-61.9(4)
O1-C13-C14-F2	-62.1(4)	C12-C13-C14-F2	58.2(4)

Table 7. Anisotropic atomic displacement parameters (Å²)

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U 11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
C1	0.0257(17)	0.0265(17)	0.0157(14)	-0.0033(13)	-0.0011(13)	0.0127(14)
C2	0.0242(17)	0.0289(18)	0.0168(15)	-0.0031(13)	-0.0027(13)	0.0129(15)
C3	0.0319(19)	0.032(2)	0.0226(17)	-0.0017(14)	-0.0023(14)	0.0178(16)
C4	0.041(2)	0.0297(19)	0.0150(16)	-0.0025(13)	0.0000(14)	0.0152(17)
C5	0.0292(19)	0.037(2)	0.0230(16)	-0.0006(15)	0.0063(14)	0.0097(17)
C6	0.0302(19)	0.039(2)	0.0218(16)	-0.0024(15)	0.0031(14)	0.0195(17)
C7	0.031(2)	0.034(2)	0.0292(18)	0.0005(15)	-0.0001(15)	0.0179(17)
C8	0.044(2)	0.043(2)	0.0262(17)	-0.0004(16)	-0.0043(16)	0.028(2)
C9	0.056(3)	0.028(2)	0.063(3)	-0.0045(19)	-0.022(2)	0.017(2)
C10	0.062(3)	0.033(2)	0.0238(18)	0.0036(16)	0.0034(18)	0.020(2)
C11	0.0278(18)	0.0275(18)	0.0197(16)	-0.0007(13)	-0.0014(14)	0.0139(16)
C12	0.0255(18)	0.0313(19)	0.0252(17)	-0.0017(14)	-0.0014(14)	0.0148(16)
C13	0.0251(17)	0.0284(19)	0.0254(18)	0.0031(14)	-0.0002(14)	0.0132(16)
C14	0.034(2)	0.046(3)	0.0323(19)	0.0109(18)	0.0021(17)	0.024(2)
F1	0.0500(16)	0.0696(19)	0.0592(15)	0.0310(14)	0.0043(13)	0.0385(15)
F2	0.0542(17)	0.0303(13)	0.0718(18)	0.0108(12)	0.0029(14)	0.0142(12)
F3	0.0550(17)	0.0676(18)	0.0463(14)	0.0323(13)	0.0246(12)	0.0356(14)
01	0.0273(13)	0.0384(15)	0.0233(12)	0.0051(11)	0.0036(10)	0.0205(11)

Table	8.	Hydrogen	atomic	coordinates	and
isotro	pica	atomic disp	lacemer	nt parameters	(Ų)
for Sp	ino_	_ECD_4_12	_P1.		

	x/a	y/b	z/c	U(eq)
H1	0.1830	0.2515	0.4295	0.027
H2	0.3588	0.3826	0.7108	0.028
H3A	0.3606	0.2257	0.8049	0.034
НЗВ	0.2622	0.1554	0.6475	0.034
H4	0.2488	0.2614	1.0253	0.035
H5A	0.0632	0.1800	0.9528	0.039
H5B	0.0783	0.1283	0.7376	0.039
H6A	0.1696	0.3542	0.8117	0.035
H6B	0.0713	0.2846	0.6533	0.035
H7	0.2927	0.4205	0.2778	0.037
H8A	0.1039	0.3296	0.2091	0.053
H8B	0.1613	0.4567	0.1740	0.053
H8C	0.0927	0.4037	0.3866	0.053
H9A	0.3143	0.5788	0.4221	0.077
H9B	0.3582	0.5265	0.5920	0.077
H9C	0.2434	0.5167	0.6269	0.077
H10A	0.1596	0.0357	0.9613	0.062
H10B	0.1392	0.0879	1.1699	0.062
H10C	0.2570	0.1080	1.1196	0.062
H11	0.3658	0.2790	0.3238	0.03
H12	0.5290	0.4596	0.5243	0.032
H13	0.5221	0.3454	0.1383	0.032
H14	0.6858	0.3898	0.2139	0.042

Table 9. Hydrogen bond distances (Å) and angles (°) for Spino_ECD_4_12_P1.

	Donor-H	Acceptor-H	Donor- Acceptor	Angle
01- H14 01#1	0.84	1.95	2.788(3)	173.0

Symmetry transformations used to generate equivalent atoms: #1 -x+1, y+1, z-1/3