Supplementary Material

Generation and reversible cyclisation of furfurylic radicals

Wilfred J. M. Lewis, Elizabeth J. Rayment, and Jeremy Robertson*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom Email: jeremy.robertson@chem.ox.ac.uk

Table of Contents

¹ H and ¹³ C NMR data	S2
Figure S1 ¹ H– ¹ H NOESY (500 MHz, C ₆ D ₆) spectrum of compound 22	S23
Figure S2 ¹ H– ¹ H NOESY (500 MHz, C ₆ D ₆) spectrum of compound 32	S24
DFT calculations	S25

¹³C NMR (126 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

2800

190

180

160

10

ъ

10

160

Ð

0

ജ

9**0** '

6

 $\overline{\mathbf{z}}$

Ð

30

æ

ை

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, C₆D₆)

¹H NMR (500 MHz, C₆D₆)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (500 MHz, C₆D₆)

¹³C NMR (126 MHz, C₆D₆)

¹H NMR (400 MHz, C₆D₆)

¹³C NMR (101 MHz, C₆D₆)

¹H NMR (400 MHz, C₆D₆)

2800

190

180

160

100

т

10

160

120

¹H NMR (400 MHz, C₆D₆)

Ð

0

11D 100 f1(ppo)n 90

ജ

6

 $\overline{\mathbf{z}}$

Ð

30

æ

ை

Issue in honor of Professor Samir Zard

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, C₆D₆)

¹H NMR (500 MHz, C₆D₆)

¹³C NMR (126 MHz, C₆D₆)

¹H NMR (400 MHz, C₆D₆)

¹H NMR (500 MHz, C₆D₆)

©AUTHOR(S)

²H NMR (92 MHz, C₆H₆ spiked with C₆D₆)

Figure S1 ¹H–¹H NOESY (500 MHz, C_6D_6) spectrum of compound **22** (*dr* = 52:48, *trans/cis*) from radical cyclisation. Green arrows indicate observed correlations; red arrows indicate those not observed; blue arrow is an ambiguous correlation.

Figure S2 $^{1}H-^{1}H$ NOESY (500 MHz, C₆D₆) spectrum of compound **32** (*dr* = 90:10, *cis/trans*) prepared by hydrogenation. Green arrows indicate observed correlations; red arrows indicate those not observed.

DFT calculations

Energy calculations for trans- and cis-22'

- (a) A conformer distribution was obtained within *Spartan'20* using molecular mechanics (MMFF, MonteCarlo) to generate 38 conformations for *trans-22'* and 24 for *cis-22'*; the methyl ester was used here to keep the number of conformations to a manageable level.
- (b) The low-lying conformations, representing ~95% of the conformational space, were retained: 17 for *trans*-**22'**, 13 for *cis*-**22'**.
- (c) DFT (B3LYP/6-31G*) equilibrium geometry calculations of the 30 separate conformations were used to obtain a Boltzmann-weighted average energy for each diastereomer leading to the values presented in Figure 1 of the main text.

Transition state calculations for the cyclisation of methyl (E)-7-(2-furyl)hept-2-enoate (7-yl radical) (S6)

- (a) Transition states were computed within *Spartan'20* for the cyclisation of 6-hexenyl radical in both *anti* ('chair') and *gauche* ('boat') conformations as defined in Table 1 of the main text.
- (b) These were then used to build the substituted radical **S6** in *anti* and *gauche* conformations, each configured to lead to either *cis* or *trans* disubstituted cylopentane.
- (c) For each of the four so-generated transition state approximations, a conformer distribution was obtained (MMFF, MonteCarlo) with the hexenyl radical core frozen (Table S1).
- (d) DFT (B3LYP/6-31G*) equilibrium geometry calculations of the 28 separate radical conformations, with the cores unfrozen, were used to obtain an energy-weighted conformer distribution within each parent.
- (e) In all cases, based on the Boltzmann weightings, just one or two low-lying conformations accounted for 83–90% of the conformational space; these were selected for DFT (B3LYP/6-31G*) transition state calculations with all constraints removed, leading to the energies presented in Table 1 of the main text.

Table S1. Numbers of conformations taken through each stage of the transition state calculations.

Conformation	MMFF	Number selected
	conformers	for TS calcns
anti-cis	4	1 (83%)
anti-trans	5	2 (83%)
gauche-cis	9	1 (86%)
gauche-trans	10	2 (90%)