Supplementary Material

Highly chemoselective conjugate addition of lithium tetraorganozincates to coumarin derivatives and functionalization with electrophiles

Marzia Dell'Aera,^{a,b} Filippo Maria Perna,^b Paola Vitale,^b Antonio Salomone,^c Angela Altomare,^a and Vito Capriati^{*b}

^a Istituto di Cristallografia (IC-CNR), Via G. Amendola 122/o, 70125 Bari, Italy ^b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy ^c Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy Email: <u>vito.capriati@uniba.it</u>

Table of Contents

Copies of ¹ H and ¹³ C NMR spectra of compounds 8a–h	S2
Computational details	S10

¹H NMR and ¹³C NMR spectra of 8a

¹H NMR (600 MHz, CDCl₃)

13C NMR (150 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8b

¹H NMR (600 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8c

¹H NMR and ¹³C NMR spectra of 8d

¹**H NMR** (600 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8e

¹**H NMR** (600 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8f

13C NMR (150 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8g

¹³C NMR (150 MHz, CDCl₃)

¹H NMR and ¹³C NMR spectra of 8h

¹H NMR (600 MHz, CDCl₃)

Issue in honor of Professor Saverio Florio

Computational details

All the quantum mechanical calculations were performed using the ORCA 4.2.0 software.¹ Conformational search was done in the gas phase using the PM3 force field and the Monte-Carlo algorithm, implemented in Spartan '14 software²: The conformer with the lowest energy was subjected to further optimization with DFT method using the B3LYP functional and the standard 6-31G(d) basis set. The nature of stationary points was defined on the basis of calculations of normal vibrational frequencies (force constant Hessian matrix).

Cartesian coordinates, Electronic Energies and Gibbs Free Energies of (R^*, R^*) -8a and (R^*, S^*) -8a isomers at B3LYP/6-31G(d) level of theory

CO₂Et

(R*,R*)-8a

С	-1.302447000	1.792406000	1.902342000
С	0.078780000	0.833517000	4.137714000
С	-1.137584000	2.590234000	3.034271000
С	-0.786092000	0.493869000	1.879606000
С	-0.091985000	0.038014000	3.006431000
С	-0.452445000	2.121895000	4.156568000
0	0.423909000	-1.247618000	3.060583000
С	0.663082000	-1.967486000	1.912929000
С	0.434246000	-1.215752000	0.587912000
С	-0.920515000	-0.451404000	0.701518000
0	0.999039000	-3.116170000	2.016560000
Cl	-1.797973000	4.220939000	3.041344000
С	1.624468000	-0.244305000	0.421466000
0	2.744484000	-0.495205000	0.814782000
0	1.293821000	0.860918000	-0.261040000
С	2.373610000	1.786812000	-0.545113000
С	1.796815000	2.906266000	-1.390626000
С	0.529888000	-2.257813000	-0.576045000
С	0.497809000	-1.682152000	-1.977948000
С	0.477446000	-0.616215000	-4.589104000
С	-0.709819000	-1.458097000	-2.654950000
С	1.696354000	-1.378868000	-2.642223000
С	1.688966000	-0.848191000	-3.933265000
С	-0.722539000	-0.927310000	-3.946675000
Н	-1.826884000	2.181474000	1.035396000
Н	0.624874000	0.437031000	4.987511000
Н	-0.330416000	2.756829000	5.027447000
Н	2.778350000	2.147294000	0.405943000

¹ a) F. Neese, The ORCA program system. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2012**, *2*, 73–78; b) F. Neese, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2018**, *8*, e1327.

² W. J. Hehre, Spartan '14; Wavefunction, Inc.: Irvine, CA, 2014.

3.168107000	1.242912000	-1.064735000
0.995378000	3.427809000	-0.857009000
1.393597000	2.513367000	-2.329689000
2.582269000	3.632869000	-1.626971000
-0.271516000	-2.990237000	-0.443430000
1.463411000	-2.805283000	-0.421246000
0.469226000	-0.208467000	-5.596648000
-1.651638000	-1.713704000	-2.174771000
2.643967000	-1.567650000	-2.141906000
2.629927000	-0.626654000	-4.430889000
-1.670525000	-0.765283000	-4.453705000
-2.144888000	-1.389652000	0.878286000
-2.140423000	-2.141102000	0.080989000
-2.053265000	-1.943846000	1.821973000
-3.488918000	-0.652477000	0.848378000
-3.624331000	-0.111698000	-0.097041000
-3.573851000	0.072197000	1.664767000
-4.316871000	-1.363393000	0.946055000
-1.056901000	0.129375000	-0.215741000
	3.168107000 0.995378000 1.393597000 2.582269000 -0.271516000 1.463411000 0.469226000 -1.651638000 2.643967000 2.629927000 -1.670525000 -2.140423000 -2.140423000 -2.053265000 -3.488918000 -3.624331000 -3.573851000 -4.316871000	3.1681070001.2429120000.9953780003.4278090001.3935970002.5133670002.5822690003.632869000-0.271516000-2.9902370001.463411000-2.8052830000.469226000-0.2084670001.651638000-1.7137040002.643967000-1.5676500002.629927000-0.626654000-1.670525000-0.765283000-2.144888000-1.389652000-2.140423000-2.141102000-3.624331000-0.652477000-3.5738510000.072197000-4.316871000-1.363393000-1.0569010000.129375000

Number of imaginary frequencies = 0

Electronic Energy	-1573.252267	Hartree
Gibbs Free Energy	-1572.923892	Hartree

```
(R*,S*)-8a
```

С	-0.864518000	2.875488000	1.297521000
С	0.747852000	2.191623000	3.478261000
С	-1.049849000	3.484592000	2.540030000
С	0.139686000	1.917821000	1.128753000
С	0.930695000	1.589791000	2.235507000
С	-0.250443000	3.152912000	3.634165000
0	1.954641000	0.660691000	2.134732000
С	2.057540000	-0.207928000	1.066460000
С	0.833827000	-0.246185000	0.135897000
С	0.453192000	1.234203000	-0.185223000
0	3.063941000	-0.856022000	0.963570000
Cl	-2.318209000	4.688278000	2.726985000
С	1.581059000	2.016045000	-0.924321000
С	1.132818000	3.389591000	-1.435351000
С	1.153641000	-1.038522000	-1.146623000
0	1.047269000	-0.603685000	-2.273902000
0	1.511752000	-2.303054000	-0.872936000

С	1.886363000	-3.119886000	-2.009722000
С	2.366892000	-4.453471000	-1.468812000
С	-0.310927000	-1.030323000	0.900160000
С	-1.608919000	-1.196388000	0.130986000
С	-4.032081000	-1.521016000	-1.273287000
С	-2.653950000	-0.271038000	0.274619000
С	-1.808189000	-2.296881000	-0.716612000
С	-3.006109000	-2.457586000	-1.414444000
С	-3.853483000	-0.428651000	-0.422418000
н	-1.501011000	3.145655000	0.460852000
н	1.385983000	1.903944000	4.307623000
Н	-0.408343000	3.634146000	4.593266000
Н	-0.433859000	1.219913000	-0.826835000
Н	2.438429000	2.141223000	-0.248577000
Н	1.918831000	1.416535000	-1.770994000
Н	1.954595000	3.881999000	-1.967359000
Н	0.819852000	4.054002000	-0.622450000
Н	0.295240000	3.293519000	-2.137664000
Н	1.016978000	-3.224341000	-2.667537000
Н	2.667211000	-2.595891000	-2.569166000
Н	1.573343000	-4.963787000	-0.912211000
Н	3.222211000	-4.313806000	-0.800299000
Н	2.674702000	-5.099810000	-2.298454000
Н	-0.514155000	-0.515818000	1.842911000
Н	0.097455000	-2.013169000	1.151791000
Н	-4.966400000	-1.646775000	-1.814202000
Н	-2.532635000	0.572735000	0.949122000
Н	-1.021797000	-3.039692000	-0.818004000
Н	-3.140166000	-3.319724000	-2.062974000
н	-4.650956000	0.298741000	-0.292838000

Number of imaginary frequencies = 0

Electronic Energy	-1573.249909	Hartree
Gibbs Free Energy	-1572.921347	Hartree